Skip to main content

Advertisement

Log in

Research status and development trends in the field of marine environment corrosion: a new perspective

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Corrosion had aroused extensive concern and attention because it was an unavoidable problem for marine equipment and facilities in service. However, the current status and development trend of marine environment corrosion research had seldom been systematically studied. Therefore, it was encouraged to use bibliometrics and information visualization analysis methods to conduct bibliometric analysis of related publications in the field of marine environment corrosion based on HistCite, CiteSpace, and VOSviewer software programs. Compared with the traditional comments of researchers in this field, this research provided a direction for the development of quantitative analysis and visualization of marine environment corrosion on a large scale. The results showed that the overall focus of research in the field of marine environment corrosion continued to increase from 1900 to 2019. China had the highest publication productivity, the USA had the highest h-index value and the second highest average citations per item value, Materials Science was the most popular subject category, Corrosion Science was the main journal and Melchers RE was the author with the most output contributions. This research also exhibited four hot spots in this field. In addition, this work could help new researchers to find research directions and identify research trends and frontiers in the field of marine environment corrosion by tracing the research hotspots of topic categories, countries, institutions, journals, authors, and publications in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Abreu CM, Izquierdo M, Keddam M, Novoa XR, Takenouti H (1996) Electrochemical behaviour of zinc-rich epoxy paints in 3% NaCl solution. Electrochim Acta 41:2405–2415

    Article  CAS  Google Scholar 

  • Alcantara J, de la Fuente D, Chico B, Simancas J, Diaz I, Morcillo M (2017) Marine atmospheric corrosion of carbon steel: a review. Materials 10

  • Ali M, Ismail M, Abu Bakar A, Noor NM, Yahaya N, Zardasti L, Sam ARM (2020) Influence of environmental parameters on microbiologically influenced corrosion subject to different bacteria strains. Sains Malays. 49:671–682

    Article  CAS  Google Scholar 

  • Ann KY, Song H-W (2007) Chloride threshold level for corrosion of steel in concrete. Corros Sci 49:4113–4133

    Article  CAS  Google Scholar 

  • Ann KY, Ahn JH, Ryou JS (2009) The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Constr Build Mater 23:239–245

    Article  Google Scholar 

  • Barber B (1961) Resistance by scientists to scientific discovery - this source of resistance has yet to be given scrutiny accorded religious and ideological sources. Science 134:596

    Article  CAS  Google Scholar 

  • Bazant ZP (1979) Physical model for steel corrosion in concrete sea structures - theory. J Struct Div Am Soc Civ Eng 105:1137–1153

    Article  Google Scholar 

  • Beccaria AM, Poggi G, Castello G (1995) Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water. Br Corros J 30:283–287

    Article  CAS  Google Scholar 

  • Blackwood DJ, Lim CS, Teo SLM (2010) Influence of fouling on the efficiency of sacrificial anodes in providing cathodic protection in Southeast Asian tropical seawater. Biofouling 26:779–785

    Article  CAS  Google Scholar 

  • Blackwood DJ, Lim CS, Teo SLM, Hu XP, Pang JJ (2017) Macrofouling induced localized corrosion of stainless steel in Singapore seawater. Corros. Sci. 129:152–160

    Article  CAS  Google Scholar 

  • Bonnin O, Cahouet J, Giordano P (1993) Eddy-current nondestructive testing - experiment and numerical-model for the conception and optimization of probes. J Phys III 3:485–494

    Google Scholar 

  • Castaneda H, Benetton XD (2008) SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corros Sci 50:1169–1183

    Article  CAS  Google Scholar 

  • Castano JG, Botero CA, Restrepo AH, Agudelo EA, Correa E, Echeverria F (2010) Atmospheric corrosion of carbon steel in Colombia. Corros Sci 52:216–223

    Article  CAS  Google Scholar 

  • Chen C, Dubin R, Kim MC (2014a) Orphan drugs and rare diseases: a scientometric review (2000-2014). Exp Opin Orphan Drugs 2:709–724

    Article  Google Scholar 

  • Chen C, Dubin R, Kim MC (2014b) Emerging trends and new developments in regenerative medicine: a scientometric update (2000 - 2014). Exp Opin Biol Ther 14:1295–1317

    Article  Google Scholar 

  • Chen SQ, Deng H, Liu GZ, Zhang D (2019) Corrosion of Q235 carbon steel in seawater containing Mariprofundus ferrooxydans and Thalassospira sp. Front Microbiol 10

  • Chiu WT, Ho YS (2005) Bibliometric analysis of homeopathy research during the period of 1991 to 2003. Scientometrics 63:3–23

    Article  Google Scholar 

  • Chiu W-T, Ho Y-S (2007) Bibliometric analysis of tsunami research. Scientometrics 73:3–17

    Article  Google Scholar 

  • Choe HB, Lee HS, Shin JH (2014) Experimental study on the electrochemical anti-corrosion properties of steel structures applying the arc thermal metal spraying method. Materials 7:7722–7736

    Article  Google Scholar 

  • Chung K-H, Jung S-C, Park B-G (2020) Eco-friendly deicer prepared from waste oyster shells and its deicing properties with metal corrosion. Environmental Technology

  • Coppola L, Coffetti D, Crotti E, Gazzaniga G, Pastore T (2020) Chloride diffusion in concrete protected with a silane-based corrosion inhibitor. Materials 13

  • Desanchez SR, Schiffrin DJ (1982) The flow corrosion mechanism of copper base alloys in sea-water in the presence of sulfide contamination. Corros Sci 22:585

    Article  CAS  Google Scholar 

  • Dexter SC, Gao GY (1988) Effect of seawater biofilms on corrosion potential and oxygen reduction of stainless-steel. Corrosion 44:717–723

    Article  CAS  Google Scholar 

  • Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832

    Article  CAS  Google Scholar 

  • Dobretsov S, Abed RMM, Teplitski M (2013) Mini-review: inhibition of biofouling by marine microorganisms. Biofouling 29:423–441

    Article  CAS  Google Scholar 

  • Du H, Li B, Brown MA, Mao G, Rameezdeen R, Chen H (2015) Expanding and shifting trends in carbon market research: a quantitative bibliometric study. J Cleaner Prod 103:104–111

    Article  Google Scholar 

  • Duan HP, Du KQ, Yan CW, Wang FH (2006) Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. Electrochim Acta 51:2898–2908

    Article  CAS  Google Scholar 

  • Duan J, Wu S, Zhang X, Huang G, Du M, Hou B (2008) Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochim Acta 54:22–28

    Article  CAS  Google Scholar 

  • Eiselstein LE, Syrett BC, Wing SS, Caligiuri RD (1983) The accelerated corrosion of Cu-Ni alloys in sulfide-polluted seawater - mechanism no 2. Corros Sci 23:223

    Article  CAS  Google Scholar 

  • Elango B, Rajendran P, Bornmann L (2013) Global nanotribology research output (1996-2010): a scientometric analysis. PLoS ONE 8:e81094

    Article  CAS  Google Scholar 

  • Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236

    Article  CAS  Google Scholar 

  • Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14:1772–1787

    Article  CAS  Google Scholar 

  • Evans UR (1923) The electrochemical character of corrosion. J Inst Met 30:239–297

    Google Scholar 

  • Fang D-j, Mao X-h, Y-m Z, S-y Z, Y-j Q, F-x G (2009) A bibliometric analysis of the global literature in the corrosion field from 1992 TO 2007. Corros Rev 27:381–397

    Article  CAS  Google Scholar 

  • Handa T, Yamamoto K (2003) Corrosion casting of the digestive diverticula of the pearl oyster, Pinctada fucata martensii (Mollusca : Bivalvia). J. Shellfish Res. 22:777–779

    Google Scholar 

  • Hou B, Li X, Ma X, Du C, Zhang D, Zheng M, Xu W, Lu D, Ma F (2017) The cost of corrosion in China. NPJ Mater Degrad 1

  • Hou JH, Yang XC, Chen CM (2018) Emerging trends and new developments in information science: a document co-citation analysis (2009-2016). Scientometrics 115:869–892

    Article  Google Scholar 

  • Hu J, Ma Y, Zhang L, Gan F, Ho Y-S (2010) A historical review and bibliometric analysis of research on lead in drinking water field from 1991 to 2007. Sci Total Environ 408:1738–1744

    Article  CAS  Google Scholar 

  • Hudson JC (1945) The corrosion of iron and steel. J Sci Instrum 22:231–235

    Article  CAS  Google Scholar 

  • Jeffrey R, Melchers RE (2007) The changing topography of corroding mild steel surfaces in seawater. Corros Sci 49:2270–2288

    Article  CAS  Google Scholar 

  • Kamimura T, Hara S, Miyuki H, Yamashita M, Uchida H (2006) Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corros Sci 48:2799–2812

    Article  CAS  Google Scholar 

  • Kawabe A (2003) Marine organisms influenced corrosion of copper alloys. Electrochemistry 71:681–685

    Article  CAS  Google Scholar 

  • Kear G, Barker BD, Walsh FC (2004) Electrochemical corrosion of unalloyed copper in chloride media - a critical review. Corros Sci 46:109–135

    Article  CAS  Google Scholar 

  • Konur O (2011) The scientometric evaluation of the research on the algae and bio-energy. Appl Energy 88:3532–3540

    Article  Google Scholar 

  • Kostoff RN, Briggs MB, Rushenberg RL, Bowles CA, Icenhour AS, Nikodym KF, Barth RB, Pecht M (2007) Chinese science and technology - structure and infrastructure. Technological Forecasting and Social Change 74:1539–1573

    Article  Google Scholar 

  • Larsen KR (2012) NASA launches study of corrosion exposure testing corrosion technology laboratory investigates method to correlate marine atmospheric exposure tests and accelerated corrosion tests. Mater Perform 51:28–32

    Google Scholar 

  • Li L, Liu Y, Zhu HH, Ying S, Luo QY, Luo H, Kuai X, Xia H, Shen H (2017) A bibliometric and visual analysis of global geo-ontology research. Comput Geosci 99:1–8

    Article  Google Scholar 

  • Little BJ, Lee JS, Ray RI (2008) The influence of marine biofilms on corrosion: a concise review. Electrochim Acta 54:2–7

    Article  CAS  Google Scholar 

  • Liu T, Chen S, Cheng S, Tian J, Chang X, Yin Y (2007) Corrosion behavior of super-hydrophobic surface on copper in seawater. Electrochim Acta 52:8003–8007

    Article  CAS  Google Scholar 

  • Liu Z, Yang J, Zhang J, Xiang H, Wei H (2019) A bibliometric analysis of research on acid rain. Sustainability 11

  • Low CTJ, Wills RGA, Walsh FC (2006) Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coat Technol 201:371–383

    Article  CAS  Google Scholar 

  • Lu YQ, Henry RS (2021) Data set for cyclic tests of eleven lightly reinforced concrete walls. J. Struct. Eng. 147:04720004

    Article  Google Scholar 

  • Luo YN, Song SZ, Jin WX, Han L (2009) In field electrochemical evaluation of carbon steel corrosion in a marine test environment. Anti-Corros Methods Mater 56:316–322

    Article  CAS  Google Scholar 

  • Ma Y, Li Y, Wang F (2008) The effect of beta-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment. Mater Chem Phys 112:844–852

    Article  CAS  Google Scholar 

  • Ma Y, Li Y, Wang F (2009) Corrosion of low carbon steel in atmospheric environments of different chloride content. Corros Sci 51:997–1006

    Article  CAS  Google Scholar 

  • Macdonald DD, Syrett BC, Wing SS (1978) Corrosion of copper-nickel-alloys 706 and 715 in flowing sea-water .1. Effect of oxygen. Corrosion 34:289–301

    Article  CAS  Google Scholar 

  • Macdonald DD, Syrett BC, Wing SS (1979) Corrosion of Cu-Ni alloys-706 and alloys-715 in flowing sea-water .2. Effect of dissolved sulfide. Corrosion 35:367–378

    Article  CAS  Google Scholar 

  • Mansfeld F, Tsai R, Shih H, Little B, Ray R, Wagner P (1992) An electrochemical and surface analytical study of stainless-steels and titanium exposed to natural seawater. Corros Sci 33:445–456

    Article  CAS  Google Scholar 

  • Mansfeld F, Liu G, Xiao H, Tsai CH, Little BJJCe (1994) The corrosion behavior of copper alloys, stainless steels and titanium in seawater 36:2063-2095

  • Melchers RE (2004a) Pitting corrosion of mild steel in marine immersion environment - Part 1: maximum pit depth. Corrosion 60:824–836

    Article  CAS  Google Scholar 

  • Melchers RE (2004b) Effect of small compositional changes on marine immersion corrosion of low alloy steels. Corros Sci 46:1669–1691

    Article  CAS  Google Scholar 

  • Melchers RE, Jeffrey R (2005) Early corrosion of mild steel in seawater. Corros Sci 47:1678–1693

    Article  CAS  Google Scholar 

  • Melchers RE, Wells T (2006) Models for the anaerobic phases of marine immersion corrosion. Corros Sci 48:1791–1811

    Article  CAS  Google Scholar 

  • Merigo JM, Pedrycz W, Weber R, de la Sotta C (2018) Fifty years of information sciences: a bibliometric overview. Inf Sci (NY) 432:245–268

    Article  Google Scholar 

  • Metiko-Hukovi M, MilošEV I (1992) Electrochemical methods in the study of localized corrosion attack. J Appl Electrochem 22:448–455

    Article  Google Scholar 

  • Miguel Campanario J, Gonzalez L, Rodriguez C (2006) Structure of the impact factor of academic journals in the field of education and educational psychology: citations from editorial board members. Scientometrics 69:37–56

    Article  Google Scholar 

  • Morcillo M, Chico B, Mariaca L, Otero E (2000) Salinity in marine atmospheric corrosion: its dependence on the wind regime existing in the site. Corros Sci 42:91–104

    Article  CAS  Google Scholar 

  • Odnevall I, Leygraf C (1993) Formation of NAZN4Cl(OH)6SO4.6H2O in a marine atmosphere. Corros Sci 34:1213–1229

    Article  CAS  Google Scholar 

  • Oh SJ, Cook DC, Townsend HE (1999) Atmospheric corrosion of different steels in marine, rural and industrial environments. Corros Sci 41:1687–1702

    Article  CAS  Google Scholar 

  • Ouyang W, Wang Y, Lin C, He M, Hao F, Liu H, Zhu W (2018) Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Sci Total Environ 637:208–220

    Article  CAS  Google Scholar 

  • Pineau S, Lefevre Y, Dupont I, Marsset B, Scherrer P, Auzeby C, Benaissa B (2008) In situ simulation of accelerated corrosion in French marine ports. Mater Perform 47:32–36

    CAS  Google Scholar 

  • Procopio L (2021) The oil spill and the use of chemical surfactant reduce microbial corrosion on API 5L steel buried in saline soil. Environ Sci Pollut Res

  • Qian GA, Niffenegger M, Li S (2011a) Probabilistic analysis of pipelines with corrosion defects by using FITNET FFS procedure. Corros Sci 53:855–861

    Article  CAS  Google Scholar 

  • Qian GA, Zhou CE, Hong YS (2011b) Experimental and theoretical investigation of environmental media on very-high-cycle fatigue behavior for a structural steel. Acta Mater 59:1321–1327

    Article  CAS  Google Scholar 

  • Qu WJ, Huang YL, Yu XM, Zheng M, Lu DZ (2015) Effect of petrolatum tape cover on the hydrogen permeation of AISI4135 steel under marine splash zone conditions. Int J Electrochem Sci 10:5892–5904

    CAS  Google Scholar 

  • Rajasekar A, Xiao W, Sethuraman M, Parthipan P, Elumalai P (2017) Airborne bacteria associated with corrosion of mild steel 1010 and aluminum alloy 1100. Environ Sci Pollut Res 24:8120–8136

    Article  CAS  Google Scholar 

  • Scotto V, Lai ME (1998) The ennoblement of stainless steels in seawater: a likely explanation coming from the field. Corros Sci 40:1007–1018

    Article  CAS  Google Scholar 

  • Scotto V, Dicintio R, Marcenaro G (1985) The influence of marine aerobic microbial film on stainless-steel corrosion behavior. Corros Sci 25:185–194

    Article  CAS  Google Scholar 

  • Shao H, Yu Q, Bo X, Duan Z (2013) Analysis of oncology research from 2001 to 2010: a scientometric perspective. Oncol Rep 29:1441–1452

    Article  Google Scholar 

  • Sheng X, Ting Y-P, Pehkonen SA (2007) The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316. Corros Sci 49:2159–2176

    Article  CAS  Google Scholar 

  • Soares CG, Garbatov Y, Zayed A, Wang G (2009) Influence of environmental factors on corrosion of ship structures in marine atmosphere. Corros Sci 51:2014–2026

    Article  CAS  Google Scholar 

  • Song J, Zhang H, Dong W (2016) A review of emerging trends in global PPP research: analysis and visualization. Scientometrics 107:1111–1147

    Article  Google Scholar 

  • Sun J, Zhao XD, Rong HS, Yang SY, Wang S, An ZY, Li Y, Qu XL (2020) Effect of Ochrobactrum sp. on the corrosion behavior of 10MnNiCrCu steel in simulated marine environment. Int J Electrochem Sci 15:2364–2374

    Article  CAS  Google Scholar 

  • Syrett BC (1976) Erosion-corrosion of copper-nickel-alloys in sea-water and other aqueous environments - literature-review. Corrosion 32:242–252

    Article  CAS  Google Scholar 

  • Syrett BC (1981) The mechanism of accelerated corrosion of copper-nickel-alloys in sulfide-polluted seawater. Corros Sci 21:187

    Article  CAS  Google Scholar 

  • Taylor CJL (2006) The effects of biological fouling control at coastal and estuarine power stations. Mar Pollut Bull 53:30–48

    Article  CAS  Google Scholar 

  • Thelwall M (2008) Bibliometrics to webometrics. J Inf Sci 34:605–621

    Article  Google Scholar 

  • Uthemann (1905) The defence of copper and its alloys against corrosion by seawater. Z Ver Dtsch Ing 49:733–736

    Google Scholar 

  • van Raan AFJ (2004) Sleeping beauties in science. Scientometrics 59:467–472

    Article  Google Scholar 

  • Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8:169–180

    CAS  Google Scholar 

  • Wei RC, Xu FL, Lin CG, Tang X, Li Y (2014) Corrosion behavior of b10 alloy exposed to seawater containing Vibrio azureus, sulfate-reducing bacteria, and their mixture. Acta Metall Sin 50:1461–1470

    CAS  Google Scholar 

  • Wharton JA, Barik RC, Kear G, Wood RJK, Stokes KR, Walsh FC (2005) The corrosion of nickel-aluminium bronze in seawater. Corros Sci 47:3336–3367

    Article  CAS  Google Scholar 

  • Wood RJK (2006) Erosion-corrosion interactions and their effect on marine and offshore materials. Wear 261:1012–1023

    Article  CAS  Google Scholar 

  • Xiao F, Li C, Sun J, Zhang L (2017) Knowledge domain and emerging trends in organic photovoltaic technology: a scientometric review based on CiteSpace analysis. Front Chem:5

  • Yang J, Shao J, Wu L, Li Y, Zhao XD, Wang S, Sun DY, Sun J (2019) Effect of Alcaligenes sp. and sulfate-reducing bacteria on corrosion of Q235 steel in simulated marine environment. Int J Electrochem Sci 14:9193–9205

    Article  CAS  Google Scholar 

  • Yao Y, Gong JK, Cui ZD (2014) Anti-corrosion performance and microstructure analysis on a marine concrete utilizing coal combustion byproducts and blast furnace slag. Clean Technol Environ Policy 16:545–554

    Article  CAS  Google Scholar 

  • Yu D, Shi S (2015) Researching the development of Atanassov intuitionistic fuzzy set: using a citation network analysis. Appl Soft Comput 32:189–198

    Article  Google Scholar 

  • Yu D, Xu C (2017) Mapping research on carbon emissions trading: a co-citation analysis. Renew Sustain Energy Rev 74:1314–1322

    Article  Google Scholar 

  • Yuan SJ, Pehkonen SO (2007) Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater. Corros Sci 49:1276–1304

    Article  CAS  Google Scholar 

  • Zhang J, Wang J, Zhang BB, Zeng YX, Duan JZ, Hou BRR (2020) Fabrication of anodized superhydrophobic 5083 aluminum alloy surface for marine anti-corrosion and anti-biofouling. J Oceanol Limnol 38:1246–1255

    Article  CAS  Google Scholar 

  • Zheng T, Wang J, Wang Q, Nie C, Smale N, Shi Z, Wang X (2015) A bibliometric analysis of industrial wastewater research: current trends and future prospects. Scientometrics 105:863–882

    Article  Google Scholar 

  • Zuo Y, Zhao PH, Zhao JM (2003) The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions. Surf Coat Technol 166:237–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Web of Science database for supporting the data in this study.

Funding

The financial support of the work was support of the National Key Research and Development Program of China (Nos. 2017YFB0903700).

Author information

Authors and Affiliations

Authors

Contributions

ZiYang Zhou, Dan Yang, Yong Xu, and Jie Ren participated in the data collection of this manuscript. Lihui Yang and Weichen Xu participated in the data analysis. Yantao Li, participated in the provision of ideas of this manuscript. Zhengquan Wang was primarily responsible for writing original draft and process of this manuscript. Yanliang Huang was responsible for the resources, formal analysis, review, and editing. All authors contributed to drafting and critically revising of the paper, gave final approval of the version to be published, and agreed to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Yantao Li or Yanliang Huang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 19.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhou, Z., Xu, W. et al. Research status and development trends in the field of marine environment corrosion: a new perspective. Environ Sci Pollut Res 28, 54403–54428 (2021). https://doi.org/10.1007/s11356-021-15974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15974-0

Keywords

Navigation