Skip to main content
Log in

Elimination of oxidative stress and genotoxicity of biosynthesized titanium dioxide nanoparticles in rats via supplementation with whey protein-coated thyme essential oil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The green synthesis of metal nanoparticles is growing dramatically; however, the toxicity of these biosynthesized particles against living organisms is not fully explored. Therefore, this study was designed to synthesize and characterize TiO2-NPs, encapsulation and characterization thyme essential oil (ETEO), and determination of the bioactive constituents of ETEO using GC-MS and evaluate their protective role against TiO2-NPs-induced oxidative damage and genotoxicity in rats. Six groups of rats were treated orally for 30 days including the control group, TiO2-NPs (300 mg/kg b.w)-treated group, ETEO at low (50 mg/kg b.w) or high dose (100 mg/kg b.w)-treated groups, and TiO2-NPs plus ETEO at the two doses-treated groups. Blood and tissues were collected for different assays. The GC-MS results indicated the presence of 21 compounds belonging to phenols, terpene derivatives, and heterocyclic compounds. The synthesized TiO2-NPs were 45 nm tetragonal particles with a zeta potential of −27.34 mV; however, ETEO were 119 nm round particles with a zeta potential of −28.33 mV. TiO2-NPs administration disturbs the liver and kidney markers, lipid profile, cytokines, oxidative stress parameters, the apoptotic and antioxidant hepatic mRNA expression, and induced histological alterations in the liver and kidney tissues. ETEO could improve all these parameters in a dose-dependent manner. It could be concluded that ETEO is a promising candidate for the protection against TiO2-NPs and can be applied safely in food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

Alb:

Albumin

AFP:

Alpha feta protein

ANOVA:

Analysis of variance

AST:

Aspartate aminotransferase

Bcl-2:

B-cell lymphoma 2

Bax:

Bcl-2 Associated X-protein

BC:

Bowman’s capsule

CEA:

Carcinoembryonic antigen

CAT:

Catalase

CV:

Central vein

Cho:

Cholesterol

cDNA:

Complementary DNA

DNA:

Deoxyribonucleic acid

D. BIL:

Direct bilirubin

DT:

Distal tubules

DLS:

Dynamic light scattering

ETEO:

Encapsulated thyme essential oil

ETEO (LD):

Encapsulated thyme essential oil (low dose)

ETEO (HD):

Encapsulated thyme essential oil high dose)

EOs:

Essential oils

FID:

Flame ionization detector

FDA:

Food and Drug Administration

GC-MS:

Gas chromatography-mass spectrometry

GRAS:

Generally recognized as safe

GPx:

Glutathione peroxidase

H & E:

Hematoxylin and eosin stains

HDL:

High density lipoprotein

GAPDH:

Housekeeping glyceraldehyde-3-phosphate dehydrogenase gen

H2O2 :

Hydrogen peroxide

8-OHdG:

8-hydroxyl deoxyguanosine

•OH:

Hydroxyl radical

LDL:

Low density lipoprotein

MDA:

Malondialdehyde

mRNA:

Messenger ribonucleic acid nitric oxide

NO:

Nitric Oxide

Nrf2:

Nuclear factor erythroid 2-related factor 2

RT-qPCR:

qPCR quantitative real-time PCR

ROS:

Reactive oxygen species

RNA:

Ribonucleic acid

SEM:

Scanning electron micrographs

Sq-PCR:

Semi-quantitative PCR

SPSS:

Statistical Package for the Social Sciences

SOD:

Superoxide dismutase

TEOs:

Thyme essential oils

TO:

Thyme oil

TiO2-NPs:

Titanium dioxide nanoparticles

TTIP:

Titanium tetra isopropoxide

T. BIL:

Total bilirubin

TP:

Total protein

TNF-α:

Tumor necrosis factor-alpha

WPI:

Whey protein isolate

References

  • Abdel-Daim MM, Eissa IAM, Abdeen A, Abdel-Latif HMR, Ismail M, Dawood MAO, Hassan AM (2019) Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia. Oreochromis niloticus Environ Toxicol Pharmacol 69:44–50

    Article  CAS  Google Scholar 

  • Abdelhalim MAK, Jarrar BM (2011) The appearance of renal cells cytoplasmic degeneration and nuclear destruction might be an indication of GNPs toxicity. Lipids Health Dis 10:147

    Article  CAS  Google Scholar 

  • Abdel-Wahhab MA, El-Nekeety AA, Hassan NS, Gibriel AA, Abdel-Wahhab KG (2018) Encapsulation of cinnamon essential oil in whey protein enhances the protective effect against single or combined sub-chronic toxicity of fumonisin B1 and/or aflatoxin B1 in rats. Environ Sci Pollut Res 25(29):29144–29161

    Article  CAS  Google Scholar 

  • Abdel-Wahhab MA, El-Nekeety AA, Hathout AS, Salman AS, Abdel-Aziem SH, Hassan NS, Abdel-Aziz MS (2020) Secondary metabolites from Bacillus sp. MERNA97 extract attenuate the oxidative stress, genotoxicity and cytotoxicity of aflatoxin B1 in rats. Food Chem Toxicol 141:111399. https://doi.org/10.1016/j.fct.2020.111399.

    Article  CAS  Google Scholar 

  • Abdel-Wahhab MA, Hassan MA, El-Nekeety AA, Abdel-Aziem SH, Hassan NS, Jaswir I, Salleh HM (2021) Zinc citrate loaded whey protein nanoparticles ameliorate CCl4-induced testicular injury via the regulation of Nrf2-Keap1 antioxidative signaling pathway. J Drug Deliv Sci Technol 61:102322

    Article  CAS  Google Scholar 

  • Adams RB (2007) Identification of essential oil components by gas chromatography/quadruple mass spectroscopy. USA. Allured publishing Co., Carol Stream, IL

    Google Scholar 

  • Ahamed M, AlSalhi MS, Siddigui MKJ (2010) Silver nanoparticle applications on human health. Clin Chim Acta 411:1841–1848

    Article  CAS  Google Scholar 

  • Al-Fartosi KG, Khuon OS, Al-Tae HI (2011) Protective role of camel’s milk against paracetamol induced hepatotoxicity in male rats. Int J Res Pharmaceut Biomed Sci 2:1795–1799

    Google Scholar 

  • Alsaraf S, Hadi Z, Al-Lawati WM, Al Lawati AA, Khan SA (2020) Chemical composition, in vitro antibacterial and antioxidant potential of Omani Thyme essential oil along with in silico studies of its major constituent. J King Saud Univ Sci 32(1):1021–1028

    Article  Google Scholar 

  • Amiri H (2012) Essential oils composition and antioxidant properties of three thymus species. Evid Based Complement Alternat Med 2012:728065–728068. https://doi.org/10.1155/2012/728065

    Article  Google Scholar 

  • Ammendolia MG, Iosi F, Maranghi F, Tassinari R, Cubadda F, Aureli F, Raggi A, Superti F, Mantovani A, Berardis B (2017) Short-term oral exposure to low doses of nano-sized TiO2 and potential modulatory effects on intestinal cells. Food Chem Toxicol 102:63–75

    Article  CAS  Google Scholar 

  • Ani A, Ani M, Moshtaghie AA, Ahmadvand H (2008) Changes in liver contents of lipid fractions following titanium exposure. Iranian J Pharm Res 2008:179–183

    Google Scholar 

  • Antoni R, Johnston KL, Collins AL, Robertson MD (2018) Intermittent v. continuous energy restriction: differential effects on postprandial glucose and lipid metabolism following matched weight loss in overweight/obese participants. Br J Nutr 119(5):507–516

    Article  CAS  Google Scholar 

  • Attia H, Soliman G, Abdel Rahman A, Nassan A, Shimaa A (2013) Hepatoprotective effect of N-acetylcysteine on the toxic hazards of titanium dioxide nanoproticles. Am J Pharmacol Toxicol 8:141–147

    Article  CAS  Google Scholar 

  • Bachler G, von Goetz N, Hungerbuhler K (2015) Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicol 9:373–380

    Article  CAS  Google Scholar 

  • Balashanmugam P, Nandhini R, Vijayapriyadharshini V, Kalaichelvan PT (2013) Biosynthesis of silver nanoparticles from orange peel extract and its antibacterial activity against fruit and vegetable pathogens. Int J Innovative Res Sci Eng 1(2):6 pages

  • Bancroft D, Stevens A, Turmer R (1996) Theory and practice of histological technique, 4th edn. Churchill Living Stone, Edinburgh, pp 36–42

    Google Scholar 

  • Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A (2020) Effects of titanium dioxide nanoparticles exposure on human health-a review. Biol Trace Elem Res 193:118–129

    Article  CAS  Google Scholar 

  • Barbosa-Cánovas G, Mortimer A, Lineback D, Spiess W, Buckle K, Colonna P (2009) Global issues in food science and technology. In: Weiss J, Gaysinsky S, Davidson M, McClements J (eds) Nanostructured encapsulation systems: food antimicrobials. Academic Press, New York, pp 425–479

    Google Scholar 

  • Bhattacharya T, Maishu SP, Akter R, Rahman MH, Akhtar MF, Saleem A, Bin-Jumah M, Kamel M, Abdel-Latif MA, Abdel-Daim MM (2021) A Review on Natural Sources Derived Protein Nanoparticles as Anticancer Agents. Curr Top Med Chem 21. https://doi.org/10.2174/1568026621666210412151700

  • Bilenler T, Gokbulut I, Sislioglu K, Karabulut I (2015) Antioxidant and antimicrobial properties of thyme essential oil encapsulated in zein particles. Flavour Fragr J 30:392–398

    Article  CAS  Google Scholar 

  • Brun E, Barreau F, Veronesi G, Fayard B, Sorieul S, Chanéac C, Rabilloud T, Mabondzo A, Herlin-Boime N, Carrière M (2014) Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part Fibre Toxicol 11:2–16

    Article  CAS  Google Scholar 

  • Bu Q, Yan G, Deng P, Peng F, Lin H, Xu Y, Cao Z, Zhou T, Xue A, Wang Y, Cen X, Zhao YL (2010) NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration. Nanotechnol 21(12):125105

    Article  CAS  Google Scholar 

  • Cai C, Ma R, Duan M, Lu D (2019) Preparation and antimicrobial activity of thyme essential oil microcapsules prepared with gum Arabic. RSC Adv 9:19740–19747

    Article  CAS  Google Scholar 

  • Chen L, Einbinder E, Zhang Q, Hasday J, Balke CW, Scharf SM (2005) Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Respir Crit Care Med 172(7):915–920

    Article  Google Scholar 

  • Chen J, Dong X, Zhao J, Tang G (2009) In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J Appl Toxicol 29:330–337

    Article  CAS  Google Scholar 

  • Chen Z, Wang Y, Zhuo L, Chen S, Zhao L, Luan X, Wang H, Jia G (2015) Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicol Lett 239(2):123–130

    Article  CAS  Google Scholar 

  • Chen Z, Han S, Zheng P, Zhou D, Zhou S, Jia G (2020) Effect of oral exposure to titanium dioxide nanoparticles on lipid metabolism in Sprague-Dawley rats. Nanoscale doi 12:5973–5986. https://doi.org/10.1039/c9nr10947a

    Article  CAS  Google Scholar 

  • Dambach DM, Andrews BA, Moulin F (2005) New technologies and screening strategies for hepatotoxicity: use of in vitro models. Toxicol Pathol 33(1):17–26

    Article  CAS  Google Scholar 

  • De Andrade CJ, Andrade LR, Silvana SM, Pastore G, Jauregi P (2017) A novel approach for the production and purification of mannosylerythritol lipids (MEL) by Pseudozyma tsukubaensis using cassava wastewater as substrate. Sep Purif Technol 180:157–167

    Article  CAS  Google Scholar 

  • Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, Christodoulou P, Siliachli A, Zoumpoulaki P (2020) Nanosystems for the encapsulation of natural products: the case of chitosan biopolymer as a matrix. Pharmaceutics 12:669. https://doi.org/10.3390/pharmaceutics12070669

    Article  CAS  Google Scholar 

  • Diniz do Nascimento L, AAB M, KSD C, Pereira Galúcio JM, Taube PS, CML C, Neves Cruz J, de Aguiar Andrade EH, LJG F (2020) Bioactive natural compounds and antioxidant activity of essential oils from spice plants: new findings and potential applications. Biomolecules 10(7):988. https://doi.org/10.3390/biom10070988

    Article  CAS  Google Scholar 

  • Duan Y, Liu J, Ma L, Li N, Liu H, Wang J, Zheng L, Liu C, Wang X, Zhao X, Yan J, Wang S, Wang H, Zhang X, Hong F (2010) Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomater 31(5):894–899

    Article  CAS  Google Scholar 

  • Dudefoi W, Moniz K, Allen-Vercoe E, Ropers MH, Virginia K (2017) Impact of food grade and nano-TiO2 particles on a human intestinal community. Food Chem Toxicol 106:242–249

    Article  CAS  Google Scholar 

  • Ebenyi LN, Ibiam UA, Aja PM (2012) Effects of Allium sativum extract on paracetamol induced hepatotoxicity in albino rats. IRJBB 2:93–97

    Google Scholar 

  • El-Banna H, Solimanand M, Al-Wabel N (2013) Hepatoprotective effects of thymus and salvia essential oils on paracetamol induced toxicity in rats. J Phys Pharm Adv 3:41–47

    Article  Google Scholar 

  • El-Guendouz S, Aazza S, Anahi Dandlen S, Majdoub N, Lyoussi B, Raposo S, Dulce AM, Gomes V, Graça Miguel M (2019) Antioxidant activity of thyme waste extract in o/w emulsions. Antioxidants (Basel) 8(8):243. https://doi.org/10.3390/antiox8080243

    Article  CAS  Google Scholar 

  • El-Nekeety AA, Mohamed SR, Hathout AS, Hassan NS, Aly AE, Abdel-Wahhab MA (2011) Antioxidant properties of Thymus vulgaris oil against aflatoxin-induce oxidative stress in male rats. Toxicon 57:984–991

    Article  CAS  Google Scholar 

  • El-Newary SA, Shaffie NM, Omer EA (2017) The protection of Thymus vulgaris leaves alcoholic extract against hepatotoxicity of alcohol in rats. Asian Pac J Trop Med 10(4):361–371

    Article  CAS  Google Scholar 

  • El-Sayed A, Kamel M (2020) Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. Environ Sci Pollut Res 27:19200–19213

    Article  CAS  Google Scholar 

  • Epstein FH (1997) Oxygen and renal metabolism. Kidney Int 51(2):381–385

    Article  CAS  Google Scholar 

  • Eratte D, Wang B, Dowling K, Barrow CJ, Adhikari BP (2014) Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Food Funct 5:2743–2750

    Article  CAS  Google Scholar 

  • Fartkhooni FM, Noori A, Mohammadi A (2016) Effects of titanium dioxide nanoparticles toxicity on the kidney of male rats. Int J Life Sci 10(1):65–69

    Article  Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430

    Article  CAS  Google Scholar 

  • Foroozandeh P, Aziz AA (2015) Merging worlds of nanomaterials and biological environment: factors governing protein corona formation on nanoparticles and its biological consequences. Nanoscale Res Lett 10:221. https://doi.org/10.1186/s11671-015-0922-3

    Article  CAS  Google Scholar 

  • Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie M, Dulce AM, Gomes V (2014) Graça MM (2104) Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol 11:30

    Article  CAS  Google Scholar 

  • Ghaderi-Ghahfarokhi M, Barzegar M, Sahari MA, Aziz MH (2016) Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food Bioprocess Technol 9:1187–1201

    Article  CAS  Google Scholar 

  • Gonçalves ND, Pena FD, Sartoratto A, Derlamelina C, Duarte MCT, Antunes AEC, Prata AS (2017) Encapsulated thyme (Thymus vulgaris) essential oil used as a natural preservative in bakery product. Food Res Int 96:154–160

    Article  CAS  Google Scholar 

  • Gould RL, Pazdro R (2019) Impact of supplementary amino acids, micronutrients, and overall diet on glutathione homeostasis. Nutrients 11(5):1056. https://doi.org/10.3390/nu11051056

    Article  CAS  Google Scholar 

  • Gui S, Zhang Z, Zheng L, Cui Y, Liu X, Li N, Sang X, Sun Q, Gao G, Cheng Z, Cheng J, Wang L, Tang M, Hong F (2011) Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. J Hazard Mater 195:365–370

    Article  CAS  Google Scholar 

  • Hassani M, Hasani S (2018) Nano-encapsulation of thyme essential oil in chitosan-Arabic gum system: evaluation of its antioxidant and antimicrobial properties. Trends Phytochem Res 2(2):75–82

    CAS  Google Scholar 

  • He T, Li X, Wang X, Xu X, Yan X, Li X, Sun S, Dong Y, Ren X, Liu X, Wang Y, Sui H, Xia Q, She G (2020) Chemical composition and antioxidant potential on essential oils of Thymus quinquecostatus Celak. from Loess Plateau in China, regulating Nrf2/Keap1 signaling pathway in zebrafish. Sci Rep 10(1):11280

    Article  CAS  Google Scholar 

  • Hong F, Zhou Y, Zhao X, Sheng L, Wang L (2017) Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice. Int J Nanomedicine 12:6197–6204

    Article  CAS  Google Scholar 

  • Husain M, Wu D, Saber AT, Decan N, Jacobsen NR, Williams A, Yauk CL, Wallin H, Vogel U, Halappanavar S (2015) Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice. Nanotoxicol 9:1013–1022

    Article  CAS  Google Scholar 

  • Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:1–24

    Article  Google Scholar 

  • Iavicoli I, Leso V, Fontana I, Bergamaschi A (2011) Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmacol Sci 15:481–508

    CAS  Google Scholar 

  • Ilani M, Alaee S, Khodabandeh Z, Jamhiri I, Owjfard M (2018) Effect of titanium dioxide nanoparticles on the expression of apoptotic markers in mouse blastocysts. Toxicol Environ Chem 100(2):228–234

    Article  CAS  Google Scholar 

  • Jinapong N, Suphantharika M, Jammong P (2008) Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J Food Eng 84:194–205

    Article  Google Scholar 

  • Jomini S, Clivot H, Bauda P, Pagnout C (2015) Impact of manufactured TiO2 nanoparticles on planktonic and sessile bacterial communities. Environ Pollut 202:196–204

    Article  CAS  Google Scholar 

  • Jovanović B, Palić D (2012) Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish--review of current knowledge, gap identification, and call for further research. Aquat Toxicol 15(118-119):141–151

    Article  CAS  Google Scholar 

  • Kabir MT, Rahman MH, Akter R, Behl T, Kaushik D, Mittal V, Pandey P, Akhtar MF, Saleem A, Albadrani GM, Kamel M, Khalifa SAM, El-Seedi HR, Abdel-Daim MM (2021) Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules 11:392. https://doi.org/10.3390/biom11030392

    Article  CAS  Google Scholar 

  • Kandeil MA, Mohammed ET, Hashem KS, Aleya L, Abdel-Daim MM (2020) Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs) induced cerebral oxidative damage and increases cerebral mitochondrial viability. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-05514-2

  • Kelly KA, Havrilla CM, Brady TC, Abramo KH, Levin ED (1998) Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect 106:375–384

    Article  CAS  Google Scholar 

  • Khalili ST, Mohsenifar A, Beyki M, Zhaveh S, Rahmani-Cherati T, Abdollahi A, Bayat M, Tabatabaei M (2015) Encapsulation of thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT Food Sci Technol 60(1):502–508

    Article  CAS  Google Scholar 

  • Khosravi K, Hoque ME, Dimock B, Hintelmann H, Metcalfe CD (2012) A novel approach for determining total titanium from titanium dioxide nanoparticles suspended in water and biosolids by digestion with ammonium persulfate. Anal Chim Acta 713:86–91

    Article  CAS  Google Scholar 

  • Kim HD, Shay T, O'Shea EK, Regev A (2009) Transcriptional regulatory circuits: predicting numbers from alphabets. Science (New York) 325(5939):429–432

    Article  CAS  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650

    Article  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  Google Scholar 

  • Latchoumycandane C, Mathur P (2002) Induction of oxidative stress in the rat testis after short-term exposure to the organochlorine pesticide methoxychlor. Arch Toxicol 76(12):692–698

    Article  CAS  Google Scholar 

  • Li BR, Hu Z, Cheng J, Xie Y, Gui SX, Sun QQ, Sang XZ, Gong XL, Cui YL, Shen WD, Hong FS (2012) Titanium dioxide nanoparticles relieve biochemical dysfunctions of fifth-instar larvae of silkworms following exposure to phoxim insecticide. Chemosphere 89(5):609–614

    Article  CAS  Google Scholar 

  • Li Y, Yan J, Ding W, Chen Y, Pack LM, Chen T (2017) Genotoxicity and gene expression analyses of liver and lung tissues of mice treated with titanium dioxide nanoparticles. Mutagenesis 32(1):33–46

    Article  CAS  Google Scholar 

  • Li J, Wang XX, Zhao GX, Chen CL, Chai ZF, Alsaedi A, Hayat T, Wang X (2018) Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47:2322–2356

    Article  CAS  Google Scholar 

  • Lin CC, Hsu YF, Lin TC, Hsu FL, Hsu HY (1998) Antioxidant and hepatoprotective activity of Punicalagin and Punicalin on carbon tetrachloride induced liver damage in rats. J Pharm Pharmacol 50(7):789–794

    Article  CAS  Google Scholar 

  • Liu H, Ma L, Zhao J, Liu J, Yan J, Ruan J, Hong F (2009) Biochemical toxicity of nano-anatase TiO2 particles in mice. Trace Elem Res 129:170–180

    Article  CAS  Google Scholar 

  • Mahran YF, Badr AM, Aldosari A, Bin-Zaid R, Alotaibi HN (2019) Carvacrol and thymol modulate the cross-talk between TNF-α and IGF-1 signaling in radiotherapy-induced ovarian failure. Oxidative Med Cell Longev 2019:3173745–3173710. https://doi.org/10.1155/2019/3173745

    Article  CAS  Google Scholar 

  • Martínez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Vanden HA, Sánchez EM, Reiner NE, Gaynor EC, Pryzdial EL, Conway EM, Orrantia E, Ruiz F, Av-Gay Y, Bach H (2012) Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomed 8(3):328–336

    Article  CAS  Google Scholar 

  • McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51(4):285–330

    Article  CAS  Google Scholar 

  • McClements DJ, DeLoid G, Pyrgiotakis G, Shatkin JA, Xiao H, Demokritou P (2016) The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): state of the science and knowledge gaps. NanoImpact 3:47–57

    Article  Google Scholar 

  • Mobeen Amanulla A, Sundaram R (2019) Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Mater Today Proc 8:323–331

    Article  CAS  Google Scholar 

  • Mohammed ET, Safwat GM (2020) Grape seed proanthocyanidin extract mitigates titanium dioxide nanoparticle (TiO2-NPs)-induced hepatotoxicity through TLR-4/NF-κB signaling pathway. Biol Trace Elem Res 196:579–589

    Article  CAS  Google Scholar 

  • Mohammed ET, Hashem KS, Abdelazem AZ, Foda FAMA (2020) Prospective protective effect of ellagic acid as a SIRT1 Activator in Iron Oxide Nanoparticle-Induced Renal Damage in Rats. Biol Trace Elem Res 198(1):177–188

    Article  CAS  Google Scholar 

  • Mohanraj VJ, Chen Y (2006) Nanoparticles a review. Trop J Pharm Res 5:561–573

    Google Scholar 

  • Molavian HR, Goldman A, Phipps CJ, Kohandel M, Wouters BG, Sengupta S, Sivaloganathan S (2016) Drug-induced reactive oxygen species (ROS) rely on cell membrane properties to exert anticancer effects. Sci Rep 6:27439. https://doi.org/10.1038/srep27439

    Article  CAS  Google Scholar 

  • Morales R (2002) Medicinal and aromatic plants industrial profiles. In: Stahl-Biskup E, Saez F (eds) The history, botany and taxonomy of the genus Thymus. Taylor Francis, London, pp PP1–P44

    Google Scholar 

  • Morgan A, Ibrahim MA, Galal MK, Ogaly HA, Abd-Elsalam RM (2018) Innovative perception on using Tiron to modulate the hepatotoxicity induced by titanium dioxide nanoparticles in male rats. Biomed Pharmacother 103:553–561

    Article  CAS  Google Scholar 

  • Morr CV, Ha EYW (1993) Whey protein concentrates and isolate processing and functional properties. Crit Rev Food Sci Nutr 33:431–476

    Article  CAS  Google Scholar 

  • Müller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-rutishauser B (2010) Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface 7(Suppl 1):S27–S40

    Google Scholar 

  • Mutlu-Ingok A, Devecioglu D, Dikmetas DN, Karbancioglu-Guler F, Capanoglu E (2020) Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: an updated review. Molecules 25(20):4711. https://doi.org/10.3390/molecules25204711

    Article  CAS  Google Scholar 

  • Nieto G (2020) A review on applications and uses of thymus in the food industry. Plants (Basel) 9(8):961. https://doi.org/10.3390/plants9080961

    Article  CAS  Google Scholar 

  • Nikoli M, Jasmina Glamočlija J, Isabel CFR, Ferreira ICFR, Ricardo C, Calhelha RC, Ângela Fernandes A, Tatjana Marković T, Dejan Marković D, Abdulhamed Giweli A, Marina Soković M (2014) Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Thymus vulgaris L. essential oils. Ind Crop Prod 52:18–190

    CAS  Google Scholar 

  • Olmedo DG, Tasat DR, Evelson P, Guglielmotti MB, Cabrini RL (2008) Biological response of tissues with macrophagic activity to titanium dioxide. J Biomed Mater Res Part A 84(4):1087–1093

    Article  CAS  Google Scholar 

  • Orazizadeh M, Khorsandi L, Absalan F, Hashemitabar M, Daneshi E (2014) Effect of beta-carotene on titanium oxide nanoparticles induced testicular toxicity in mice. J Assist Reprod Genet 31:561–568

    Article  Google Scholar 

  • Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:1–12

    Article  CAS  Google Scholar 

  • Pecarski D, Knežević-Jugović Z, Dimitrijević-Branković S, Mihajilovski K, Janković S (2014) Preparation, characterization and antimicrobial activity of chitosan microparticles with thyme essential oil. Hem Ind 68(6):721–729

    Article  Google Scholar 

  • Peng X, Chen K, Chen J, Fang J, Cui H, Zuo Z, Deng J, Chen Z, Geng Y, Lai W (2016) Aflatoxin B1 affects apoptosis and expression of Bax, Bcl-2, and Caspase-3 in thymus and bursa of fabricius in broiler chickens. Environ Toxicol 31(9):1113–1120

    Article  CAS  Google Scholar 

  • Peters RJ, van Bemmel G, Herrera-Rivera Z, Helsper HP, Marvin HJ, Weigel S, Tromp PC, Oomen AG, Rietveld AG, Bouwmeester H (2014) Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. J Agric Food Chem 62:6285–6293

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(900):2002–2008

    Google Scholar 

  • Philbrook NA, Winn LM, Afrooz ARMN, Saleh NB, Walker VK (2011) The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol 257(3):429–436

    Article  CAS  Google Scholar 

  • Pialoux V, Mounier R, Brown AD, Steinback CD, Rawling JM, Poulin MJ (2009) Relationship between oxidative stress and HIF-1α mRNA during sustained hypoxia in humans. Free Radic Biol Med 46(2):321–326

    Article  CAS  Google Scholar 

  • Rajapakse K, Drobne D, Valant J, Vodovnik M, Levart A, Marinsek-Logar R (2012) Acclimation of tetrahymena thermophila to bulk and nano-TiO2 particles by changes in membrane fatty acids saturation. J Hazard Mater 221:199–205

    Article  CAS  Google Scholar 

  • Rao KG, Ashok CH, Venkateswara Rao K, Shilpa Chakra CH, Rajendar V (2015) Synthesis of TiO2 nanoparticles from orange fruit waste Int. J. Multidiscip. Adv Res Trends II(I):82–90

    Google Scholar 

  • Reeves JF, Davies SJ, Dodd NJF, Jha AN (2008) Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res Fundam Mol Mech Mutagen 640:113–122

    Article  CAS  Google Scholar 

  • Reiner Ž (2017) Hypertriglyceridaemia and risk of coronary artery disease. Nat Rev Cardiol 14(7):401–411

    Article  CAS  Google Scholar 

  • Rikans LE, Hornbrook KR (1997) Lipid peroxidation, antioxidant protection and aging. Biochim Biophys Acta Mol basis Dis 1362:116–127

    Article  CAS  Google Scholar 

  • Roger B, Lagarce F, Garcion E, Benoit JP (2010) Biopharmaceutical parameters to consider in order altering the fate of nanocarriers after oral delivery. Nanomed 5(2):287–306

    Article  CAS  Google Scholar 

  • Rossi EM, Pylkkänen L, Koivisto AJ, Vippola M, Jensen KA, Miettinen M, Sirola K, Nykäsenoja H, Karisola P, Stjernvall T, Vanhala E, Kiilunen M, Pasanen P, Mäkinen M, Hämeri K, Joutsensaari J, Tuomi T, Jokiniemi J, Wolff H, Savolainen K, Matikainen S, Alenius H (2010) Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Toxicol Sci 113:422–433

    Article  CAS  Google Scholar 

  • Ruberto G, Baratta MT (2000) Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 69(2):167–174

    Article  CAS  Google Scholar 

  • Sadat SM, Jahan ST, Haddadi A (2016) Effects of size and surface charge of polymeric nanoparticles on in vitro and in vivo applications. J Biomater Nanobiotechnol 7:91–108

    Article  CAS  Google Scholar 

  • Salman AS, Al-Shaikh TM, Hamza ZK, El-Nekeety AA, Bawazir SS, Hassan NS, Abdel-Wahhab MA (2021) Matlodextrin-cinnamon essential oil nanoformulation as a potent protective against titanium nanoparticles-induced oxidative stress, genotoxicity, and reproductive disturbances in male mice. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-13518-0

  • Samak DH, El-Sayed YS, Shaheen HM, El-Far AH, Onoda A, Abdel-Daim MM, Umezawa M (2018) In-ovo exposed carbon black nanoparticles altered mRNA gene transcripts of antioxidants, proinflammatory and apoptotic pathways in the brain of chicken embryos. Chem Biol Interact 295:133–139

    Article  CAS  Google Scholar 

  • Sanders K, Degn LL, Mundy WR, Zucker RM, Dreher K, Zhao B, Roberts JE, Boyes WK (2012) In vitro phototoxicity and hazard identification of nano-scale titanium dioxide. Toxicol Appl Pharmacol 258(2):226–236

    Article  CAS  Google Scholar 

  • Saquib Q, Al-Khedhairy AA, Siddiqui MA, Abou-Tarboush FM, Azam A, Musarrat J (2012) Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol in Vitro 26:351–361. https://doi.org/10.1016/j.tiv.2011.12.011

    Article  CAS  Google Scholar 

  • Sharma P, Singh R, Jan M (2014) Dose-dependent effect of deltamethrin in testis, liver, and kidney of Wistar rats. Toxicol Int 21(2):131–139

    Article  CAS  Google Scholar 

  • Shi Z, Niu Y, Wang Q, Shi L, Guo H, Liu Y, Zhu Y, Liu S, Liu C, Chen X (2015) Reduction of DNA damage induced by titanium dioxide nanoparticles through Nrf2 in vitro and in vivo. J Hazard Mater 298:310–319

    Article  CAS  Google Scholar 

  • Shukla RK, Kumar A, Vallabani NVS, Pandey AK, Dhawan A (2014) Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomed 9:1423–1434

    Article  CAS  Google Scholar 

  • Swathi N, Dayalan S, Shanmugam R, Lakshmi T (2019) Green synthesis of titanium dioxide nanoparticles using Cassia fistula and its antibacterial activity. Int J Res Pharm Sci 10(2):856–860

    Article  CAS  Google Scholar 

  • Sycheva LP, Zhurkov VS, Iurchenko VV, Daugel-Dauge NO, Kovalenko MA, Krivtsova EK, Durnev AD (2011) Investigation of genotoxic and cytotoxic effects of micro and nanosized titanium dioxide in six organs of mice in vivo. Mutat Res Genet Toxicol Environ Mutagen 726(1):8–14

    Article  CAS  Google Scholar 

  • Tao F, Hill LE, Peng Y, Gomes GL (2014) Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. LWT Food Sci Technol 59:247–255

    Article  CAS  Google Scholar 

  • Thakur BK, Kumar A, Kumar D (2019) Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. S Afr J Bot 124:223–227

    Article  CAS  Google Scholar 

  • Thapa BR, Walia A (2007) Liver function tests and their interpretation. Indian J Pediatr 74(7):663–671

    Article  CAS  Google Scholar 

  • Torrado AM, Cortés A, Salgado JM, Max B, Rodríguez N, Bibbins BP, Converti A, Domínguez JM (2011) Citric acid production from orange peel wastes by solid-state fermentation. Braz J Microbiol 42:394–409

    Article  CAS  Google Scholar 

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69(22):8784–8789

    Article  CAS  Google Scholar 

  • Tucci P, Porta G, Agostini M, Dinsdale D, Iavicoli I, Cain K, Finazzi-Agró A, Melino G, Willis A (2013) Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis 4:e549. https://doi.org/10.1038/cddis

    Article  CAS  Google Scholar 

  • Valentini X, Rugira P, Frau A, Tagliatti V, Conotte R, Laurent S, Colet JM, Nonclercq D (2019) Hepatic and renal toxicity induced by TiO2 nanoparticles in rats: a morphological and metabonomic study. J Toxicol 5767012:19

  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185

    Article  CAS  Google Scholar 

  • Wang Y, Cui H, Zhou J, Li F (2014) Cytotoxicity, DNA damage and apoptosis induced by titanium dioxide nanoparticles in human nonsmall cell lung cancer A549 cells. Environ Sci Pollut Res 22:5519–5530. https://doi.org/10.1007/s11356-014-3717-7

    Article  CAS  Google Scholar 

  • Wang X, Yu S, Jin J, Wang H, Alharbi NS, Alsaedi A, Hayat T, Wang X (2016) Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions. Sci Bull 61(20):583–1593

    Article  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250

    Article  CAS  Google Scholar 

  • Woranuch S, Yoksan R (2013) Eugenol-loaded chitosan nanoparticles. I. thermal stability improvement of eugenol through encapsulation. J Carbohydr Polym 96:578–585

    Article  CAS  Google Scholar 

  • Wu T, Tang M (2018) The inflammatory response to silver and titanium dioxide nanoparticles in the central nervous system. Nanomedicine (London) 13(2):233–249

    Article  CAS  Google Scholar 

  • Xu YY, Howes T, Adhikari B, Bhandari B (2013) Effects of emulsification of fat on the surface tension of protein solutions and surface properties of the resultant spray-dried particles. Dry Technol 31(16):1939–1950

    Article  CAS  Google Scholar 

  • Youdim KA, Deans SG, Finlayson HJ (2002) The antioxidant properties of thyme (Thymus zygis L.) essential oil: an inhibitor of lipid peroxidation and a free radical scavenger. J Essent Oil Res 14(3):210–215

    Article  CAS  Google Scholar 

  • Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM (2020) Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res 27:19151–19168

    Article  CAS  Google Scholar 

  • Zhao J, Bowman L, Zhang X, Vallyathan V, Young SH, Castranova V, Ding M (2009) Titanium dioxide (TiO2) nanoparticles induce JB6 Cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ Health A 72(19):1141–1149

    Article  CAS  Google Scholar 

  • Zhao Y, Howe JLC, Yu Z, Leong DT, Chu JJH, Loo JSC, Ng KW (2013) Exposure to titanium dioxide nanoparticles induces autophagy in primary human keratinocytes. Small 9:387–392. https://doi.org/10.1002/smll.201201363

    Article  CAS  Google Scholar 

Download references

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The codes used during the current study are available from the corresponding author on reasonable request.

Funding

This work was supported by the National Research Centre, Dokki, Cairo, Egypt project # 12050305.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out in collaboration between all authors. Authors AA El-Nekeety, HE Mohammed, and OI Elshafey prepared and characterized the nanoparticles, carried out the experimental work and the biochemical analysis, and managed the literature search. Author SH Abdel-Aziem carried out the genetic analysis. Author NS. Hassan carried out the histological part. All authors shared in writing the first draft. Author Mosaad A. Abdel-Wahhab wrote the protocol, managed the project, managed the analyses of the study, performed the statistical analysis, and wrote the final draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mosaad A. Abdel-Wahhab.

Ethics declarations

Ethics approval

The protocol of the current study was approved by the ethics Animal Care and Use Committee of the National research Center, Dokki, Cairo, Egypt (approval # 12050305/2019)

Consent for publication

Not applicable

Consent to Participate

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Wahhab, M.A., El-Nekeety, A.A., Mohammed, H.E. et al. Elimination of oxidative stress and genotoxicity of biosynthesized titanium dioxide nanoparticles in rats via supplementation with whey protein-coated thyme essential oil. Environ Sci Pollut Res 28, 57640–57656 (2021). https://doi.org/10.1007/s11356-021-14723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14723-7

Keywords

Navigation