Skip to main content
Log in

On the use of chemotaxonomy, a phytoplankton identification and quantification method based on pigment for quick surveys of subtropical reservoirs

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Traditionally, composition and biomass of phytoplankton communities are determined by microscopy, but this method is time-consuming and so does not allow for high-frequency data acquisition across space and time. Pigment-based chemotaxonomy (CHEMTAX) is now widely applied to study of phytoplankton community structure on broader spatial and temporal scales of oceans, but the ability of this approach to provide estimates of phytoplankton assemblage in freshwater ecosystems is yet underdeveloped. To investigate the efficiency of the high-performance liquid chromatography (HPLC)-CHEMTAX in quantifying the different phytoplankton groups in inland freshwater, we present a comparison between phytoplankton pigment analyses by HPLC with CHEMTAX and microscopic counting of phytoplankton samples from four subtropical reservoirs in January and July 2014, respectively. The correlation between pigment and phytoplankton abundance detected by microscopy was stronger than that between pigment and phytoplankton biomass. The published marker pigments and their revised ratios can be used to describe phytoplankton abundances in a mixed community of freshwater phytoplankton, and pigment-based CHEMTAX can successfully describe the overall pattern of phytoplankton community dynamics during different seasons. The use of pigment-based CHEMTAX for quick surveys of phytoplankton communities can be recommended as a useful supplement or alternative tool to microscopy for freshwater ecosystem management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alou-Font E, Mundy CJ, Roy S, Gosselin M, Agustí S (2013) Snow cover affects ice algal pigment composition in the coastal Arctic Ocean during spring. Mar Ecol Prog Ser 474:89–104

    Article  Google Scholar 

  • Armbrecht LH, Wright SW, Petocz P, Armand LK (2015) A new approach to testing the agreement of two phytoplankton quantification techniques: microscopy and CHEMTAX. Limnol Oceanogr Meth 13(8):425–437

    Article  Google Scholar 

  • Catherine A, Escoffier N, Belhocine A, Nasri A, Hamlaoui S, Yéprémian C, Bernard C, Troussellier M (2012) On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Res 46(6):1771–1784

    Article  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2015) PRIMER v7: user manual/tutorial PRIMER-E Ltd: Plymouth, UK.

  • Descy JP, Higgins HW, Mackey DJ, Hurley JP, Frost TM (2000) Pigment ratios and phytoplankton assessment in northern Wisconsin lakes. J Phycol 36(2):274–286

    Article  CAS  Google Scholar 

  • Descy JP, Hardy MA, Stenuite S, Pirlot S, Leporcq B, Kimirei I, Sekadende B, Mwaitega S, Sinyenza D (2005) Phytoplankton pigments and community composition in Lake Tanganyika. Freshwater Biol 50(4):668–684

    Article  CAS  Google Scholar 

  • Desortová B (1981) Relationship between chlorophyll-a concentration and phytoplankton biomass in several reservoirs in Czechoslovakia. Int Rev Ges Hydrobio 66(2):153–169

  • Donabaum K (1992) Der Chlorophyll-a Gehalt von Planktonalgen: Untersuchungen in statischer und kontinuierlicher Kultur. PhD thesis, University of Vienna, Vienna.

  • Downing J, Prairie Y, Cole J, Duarte C, Tranvik L, Striegl R, McDowell W, Kortelainen P, Caraco N, Melack J (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397

    Article  Google Scholar 

  • Eker-Develi E, Kideys AE (2003) Distribution of phytoplankton in the southern Black Sea in summer 1996, spring and autumn 1998. J Marine Syst 39(3):203–211

    Article  Google Scholar 

  • Fietz S, Nicklisch A (2004) An HPLC analysis of the summer phytoplankton assemblage in Lake Baikal. Freshwater Biol 49(3):332–345

    Article  Google Scholar 

  • Goericke R, Montoya J (1998) Estimating the contribution of microalgal taxa to chlorophyll a in the field - variations of pigment ratios under nutrient- and lightlimited growth. Mar Ecol Prog Ser 169:97–112

  • Gregor J, Maršálek B (2004) Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. Water Res 38(3):517–522

  • Greisberger S, Teubner K (2007) Does pigment composition reflect phytoplankton community structure in differing temperature and light conditions in a deep alpine lake? An approach using HPLC and delayed fluorescence techniques. J Phycol 43(6):1108–1119

    Article  CAS  Google Scholar 

  • Greisberger S, Dokulil M, Teubner K (2008) A comparison of phytoplankton size-fractions in Mondsee, an alpine lake in Austria: distribution, pigment composition and primary production rates. Aquat Ecol 42(3):379–389

    Article  CAS  Google Scholar 

  • Han BP (2010) Reservoir ecology and limnology in China: a retrospective comment. J Lake Sci 22(2):151–160

    Google Scholar 

  • Havskum H, Schlüter L, Scharek R, Berdalet E, Jacquet S (2004) Routine quantification of phytoplankton groups - microscopy or pigment analyses? Mar Ecol Prog Ser 273:31–42

  • Higgins WH, Wright SW, Schlüter L (2011) Quantitative interpretation of chemotaxonomic pigment data. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. Cambridge University Press, Cambridge, UK, pp 257–313

    Chapter  Google Scholar 

  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J phycol 35(2):403–424

    Article  Google Scholar 

  • Huang B, Hu J, Xu H, Cao Z, Wang D (2010) Phytoplankton community at warm eddies in the northern South China Sea in winter 2003/2004. Deep Sea Res Pt II 57(19):1792–1798

    Article  CAS  Google Scholar 

  • Hudnell HK (2008) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer Science & Business Media, Berlin, Germany

    Book  Google Scholar 

  • Hunter BL, Laws EA (1981) ATP and chlorophyll a as estimators of phytoplankton carbon biomass. Limnol Oceanogr 26(5):944–956

  • Hunter-Cevera KR, Neubert MG, Olson RJ, Solow AR, Shalapyonok A, Sosik HM (2016) Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354:326–329

    Article  CAS  Google Scholar 

  • Irigoien X, Huisman J, Harris RP (2004) Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429:863–867

    Article  CAS  Google Scholar 

  • Kremer CT, Gillette JP, Rudstam LG, Brettum P, Ptacnik R (2014) A compendium of cell and natural unit biovolumes for >1200 freshwater phytoplankton species. Ecology 95(10):2984–2984

    Article  Google Scholar 

  • Latasa M (2007) Improving estimations of phytoplankton class abundances using CHEMTAX. Mar Ecol Prog Ser 329:13–21

    Article  Google Scholar 

  • Litchman E, de Tezanos PP, Edwards K, Klausmeier C, Kremer C, Thomas M (2015) Global biogeochemical impacts of phytoplankton: a trait-based perspective. J Ecology 103:1384–1396

    Article  CAS  Google Scholar 

  • Liu LM, Yang J, Zhang YY (2011) Genetic diversity patterns of microbial communities of in a subtropical riverine ecosystem (Jiulong River, southeast China). Hydrobiologia 678:113–125

    Article  CAS  Google Scholar 

  • Liu LM, Yang J, Lv H, Yu XQ, Wilkinson DM, Yang J (2015) Phytoplankton communities exhibit a stronger response to environmental changes than bacterioplankton in three subtropical reservoirs. Environ Sci Technol 49(18):10850–10858

    Article  CAS  Google Scholar 

  • Lv H, Yang J, Liu LM, Yu XQ, Yu Z, Chiang P (2014) Temperature and nutrients are significant drivers of seasonal shift in phytoplankton community from a drinking water reservoir, subtropical China. Environ Sci Pollut Res 21(9):5917–5928

    Article  CAS  Google Scholar 

  • Mackey M, Mackey D, Higgins H, Wright S (1996) CHEMTAX - a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283

  • Mackey MD, Higgins HW, Mackey DJ, Wright SW (1997) CHEMTAX user's manual: a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton pigments. CSIRO Marine Laboratories Report 229, Hobart, Australia ISBN 0-643-06040-5.

  • Marañón E (2015) Cell size as a key determinant of phytoplankton metabolism and community structure. Mar Sci 7:241–264

    Article  Google Scholar 

  • Messer G, Ben-Shaul Y (1972) Changes in chloroplast structure during culture growth of Peridinium cinctum fa. westii (Dinophyceae). Phycologia 11(3):291–299

    Article  Google Scholar 

  • Paerl HW, Otten TG (2016) Duelling ‘CyanoHABs’: unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2-fixing harmful cyanobacteria. Environ Microbiol 18(2):316–324

    Article  CAS  Google Scholar 

  • Reid F (1983) Biomass estimation of components of the marine nanoplankton and picoplankton by the Utermöhl settling technique. J Plankton Res 5(2):235–252

    Article  Google Scholar 

  • Ren KX, Xue YY, Rønn R, Liu LM, Chen HH, Rensing C, Yang J (2018) Dynamics and determinants of amoeba community, occurrence and abundance in subtropical reservoirs and rivers. Water Res 146:177–186

    Article  CAS  Google Scholar 

  • Sarmento H, Descy JP (2008) Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes. J Appl Phycol 20(6):1001–1011

    Article  Google Scholar 

  • Schlüter L, Lauridsen T, Krogh G, Jørgensen T (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios – a comparison between pigment analysis by HPLC and microscopy. Freshwater Biol 51(8):1474–1485

  • Schlüter L, Behl S, Striebel M, Stibor H (2016) Comparing microscopic counts and pigment analyses in 46 phytoplankton communities from lakes of different trophic state. Freshwater Biol 61(10):1627–1639

    Article  CAS  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10(2):126–139

    Article  CAS  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24(4):201–207

    Article  Google Scholar 

  • Tamm M, Freiberg R, Tõnno I, Nõges P, Nõges T (2015) Pigment-based chemotaxonomy - a quick alternative to determine algal assemblages in large shallow eutrophic lake? PloS One 10(3):e0122526

    Article  CAS  Google Scholar 

  • Vörös L, Padisák J (1991) Phytoplankton biomass and chlorophyll-a in some shallow lakes in central Europe. Hydrobiologia 215:111–119

  • Wilhelm C, Rudolph I, Renner W (1991) A quantitative method based on HPLC-aided pigment analysis to monitor structure and dynamics of the phytoplankton assemblage—a study from Lake Meerfelder Maar (Eifel, Germany). Arch Hydrobiol 123(1):21–35

    CAS  Google Scholar 

  • Wright S, Thomas D, Marchant H, Higgins H, Mackey M, Mackey D (1996) Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the 'CHEMTAX' matrix factorisation program. Mar Ecol Prog Ser 144:285–298

  • Xiu P, Chai F (2012) Spatial and temporal variability in phytoplankton carbon, chlorophyll, and nitrogen in the North Pacific. J Geophys Res 117:C11023

    Article  CAS  Google Scholar 

  • Xu J, Wu XH, Yang Y, Xu S (2016) Changes in growth, photosynthesis and chlorophyll fluorescence in the freshwater dinoflagellate Peridinium umbonatum (Peridiniales, Pyrrophyta) in response to different temperatures. Phycologia 55(4):469–477

    Article  CAS  Google Scholar 

  • Yang J, Yu XQ, Liu LM, Zhang WJ, Guo PY (2012) Algae community and trophic state of subtropical reservoirs in southeast Fujian, China. Environ Sci Pollut Res 19(5):1432–1442

    Article  CAS  Google Scholar 

  • Yang J, Lv H, Yang J, Liu LM, Yu XQ, Chen HH (2016) Decline in water level boosts cyanobacteria dominance in subtropical reservoirs. Sci Total Environ 557(558):445–452

    Article  CAS  Google Scholar 

  • Yang JR, Lv H, Isabwe A, Liu LM, Yu XQ, Chen HH, Yang J (2017) Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Res 120:52–63

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lei Wang from Xiamen University for his help in testing the pigment. We thank Y. Zhuang from the Second Institute of Oceanography, MNR, for guiding us to analyze the pigment data.

Availability of data and materials

The datasets used during the current study are available from the corresponding author on reasonable request.

Funding

This study was supported by the National Natural Science Foundation of China (91851104, 41703074, 41901135, and 31370471) and the Natural Science Foundation of Fujian Province of China (2019J02016).

Author information

Authors and Affiliations

Authors

Contributions

JY designed the research. JY contributed the reagents, materials, and analysis tools. JRY and XQY collected the samples. JRY identified and counted the phytoplankton taxa, while XQY and JXC performed the HPLC experiments. XQY, JRY, AI, and JY analyzed the data and drafted the manuscript. All authors discussed the interpretation of the results. All authors have agreed to authorship and have approved the manuscript submission.

Corresponding author

Correspondence to Jun Yang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publish

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Yang, J.R., Chen, J. et al. On the use of chemotaxonomy, a phytoplankton identification and quantification method based on pigment for quick surveys of subtropical reservoirs. Environ Sci Pollut Res 28, 3544–3555 (2021). https://doi.org/10.1007/s11356-020-10704-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10704-4

Keywords

Navigation