Skip to main content

Advertisement

Log in

Impact of mixing layer height variations on air pollutant concentrations and health in a European urban area: Madrid (Spain), a case study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The occurrence of local high-pollution episodes in densely populated urban areas, which have huge fleets of vehicles, is currently one of the most worrying problems associated with air pollution worldwide. Such episodes are produced under specific meteorological conditions, which favour the sudden increase of levels of air pollutants. This study has investigated the influence of the mixing layer height (MLH) on the concentration levels of atmospheric pollutants and daily mortality in Madrid, Spain, during the period 2011–2014. It may help to understand the causes and impact of local high-pollution episodes. MLH at midday over Madrid was daily estimated from meteorological radio soundings. Then, days with different MLH over this urban area were characterized by meteorological parameters registered at different levels of an instrumented tower and by composite sea level pressure maps, representing the associated synoptic meteorological scenarios. Next, statistically significant associations between MLH and levels of PM10, PM2.5, NO, NO2, CO and ultra-fine particles number concentrations registered at representative monitoring stations were evaluated. Finally, associations between all-natural cause daily mortality in Madrid, MLH, and air pollutants were estimated using conditional Poisson regression models. The reduction of MLH to values below 482 m above-ground level under strong atmospheric stagnation conditions was accompanied by a statistically significant increase in levels of NO, NO2, CO, PM2.5 and ultra-fine particle number concentrations at urban-traffic and suburban monitoring sites. The decrease of the MLH was also associated to a linear increase of the daily number of exceedances of the UE NO2 hourly limit value (200 μg/m3) and levels of air pollutants at hotspot urban-traffic monitoring stations. Also, a statistically significant association of the MLH with all-natural cause daily mortality was obtained. When the MLH increased by 830 m, the risk of mortality decreased by 2.5% the same day and by 3.3% the next day, when African dust episodic days were excluded. They were also higher in absolute terms than the increases in risk of mortality that were determined for the exposition to any other air pollutant. Our results suggest that when the prediction models foresee values of MLH below 482 m above-ground level in Madrid, the evolution of high-contamination episodes will be very favourable. Therefore, short-term policy measures will have to be implemented to reduce NO, NO2, CO, PM2.5 and ultra-fine particle emissions from anthropogenic sources in this southern European urban location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amato F, Alastuey A, de la Rosa J, Gonzalez Castanedo Y, Sánchez de la Campa AM, Pandolfi M, Lozano A, Contreras González J, Querol X (2014) Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain. Atmos Chem Phys 14:3533–3544

    Article  Google Scholar 

  • Armstrong BG, Gasparrini A, Tobias A (2014) Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis. BMC Med Res Methodol 14:122. https://doi.org/10.1186/1471-2288-14-122

    Article  Google Scholar 

  • Artíñano B, Salvador P, Alonso DG, Querol X, Alastuey A (2004) Influence of traffic on the PM10 and PM2.5 urban aerosol fractions in Madrid (Spain). Sci Total Environ 334-335:111–123

    Article  Google Scholar 

  • Artíñano B, Pujadas M, Alonso-Blanco E, Becerril-Valle M, Coz E, Gómez-Moreno FJ, Salvador P, Nuñez L, Palacios M, Díaz E (2018) Real-time monitoring of atmospheric ammonia during a pollution episode in Madrid (Spain). Atmos Environ 189(2018):80–88

    Article  Google Scholar 

  • Ayuntamiento de Madrid - AM (2016). Inventory of Madrid city air pollutant emissions 2016. Directorate General for Sustainability and Environmental Control. Technical report prepared by: “Fundación para el Fomento de la Innovación Industrial (F2 I 2 ) Escuela Técnica Superior de Ingenieros Industriales Technical University of Madrid (U.P.M)”, 20 pp. Available at: https://www.madrid.es/UnidadesDescentralizadas/Sostenibilidad/EspeInf/EnergiayCC/04CambioClimatico/4aInventario/Ficheros/EmissionsInvt2016.pdf. (Last access November 2019)

  • Ayuntamiento de Madrid - AM (2019). Annual air quality reports. In Spanish. Available at: http://www.mambiente.madrid.es/opencms/opencms/calaire/Publicaciones/Memorias.html. (Last access November 2019)

  • Borge R, Narros A, Artíñano B, Yagüe C, Gomez-Moreno FJ, de la Paz D, Román-Cascon C, Díaz E, Maqueda G, Sastre M, Quaassdorff C, Dimitroulopoulou C, Vardoulakis S (2016) Assessment of micro- scale spatio-temporal variation of air pollution at an urban hotspot in Madrid (Spain) through an extensive field campaign. Atmos Environ 140:432–445

    Article  CAS  Google Scholar 

  • Borge R, Artíñano B, Yagüe C, Gomez-Moreno FJ, Saiz-Lopez A, Sastre M, Narros A, García-Nieto D, Benavent N, Maqueda G, Barreiro M, de Andrés JM, Cristóbal A (2018) Application of a short term air quality action plan in Madrid (Spain) under a high-pollution episode - part I: diagnostic and analysis from observations. Sci Total Environ 635:1561–1573

    Article  CAS  Google Scholar 

  • Brines M, Dall’Osto M, Beddows DCS, Harrison RM, Gómez-Moreno F, Núñez L, Artíñano B, Costabile F, Gobbi GP, Salimi F, Morawska L, Sioutas C, Querol X (2015) Traffic and nucleation events as main sources of ultrafine particles. Atmos Chem Phys 15:5929–5945

    Article  CAS  Google Scholar 

  • Carnerero C, Pérez N, Reche C, Ealo M, Titos G, Lee H, Eun H, Park Y, Dada L, Paasonen P, Kerminen V, Mantilla E, Escudero M, Gómez-Moreno FJ, Alonso-Blanco E, Coz E, Saiz-Lopez A, Temime-Roussel B, Marchand N, Beddows DCS, Harrison RM, Petäjä T, Kulmala M, Ahn K, Alastuey A, Querol X (2018) Vertical and horizontal distribution of regional new particle formation events in Madrid. Atmos Chem Phys 18:16601–16618

    Article  CAS  Google Scholar 

  • Comunidad Autónoma de Madrid - CAM (2019). Annual air quality reports. In Spanish. Available at: http://gestiona.madrid.org/azul_internet/run/j/InformEvaluacionAccion.icm?ESTADO_MENU=7. (Last access November 2019)

  • Crespí SN, Artíñano B, Cabal H (1995) Synoptic clasification of the mixed-layer height evolution. J Appl Meteorol 34(7):1666–1676

    Article  Google Scholar 

  • Díaz J, Linares C, Carmona R, Russo A, Ortiz C, Salvador P, Machado Trigo R (2017) Saharan dust intrusions in Spain: health impacts and associated synoptic conditions. Environ Res 156:455–467. https://doi.org/10.1016/j.envres.2017.03.047

    Article  CAS  Google Scholar 

  • Díaz J, Ortiz C, Falcón I, Salvador C, Linares C (2018) Short-term effect of tropospheric ozone on daily mortality in Spain. Atmos Environ 187:107–116

    Article  Google Scholar 

  • Dinno A (2015) Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. Stata J 15(1):292–300. https://doi.org/10.1177/1536867X1501500117

    Article  Google Scholar 

  • Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–64

    Article  Google Scholar 

  • Escudero M, Querol X, Pey J, Alastuey A, Pérez N, Ferreira F, Cuevas E, Rodríguez S, Alonso S (2007) A methodology for the quantification of the net African dust load in air quality monitoring networks. Atmos Environ 41:5516–5524

    Article  CAS  Google Scholar 

  • European Environment Agency - EEA (2014). Air quality in Europe-2014 report. EEA Report, No 5/2014 80 pp. doi: https://doi.org/10.2800/22847

  • European Environment Agency - EEA (2018). Air quality in Europe-2018 report. EEA Report, No 12/2018. 83 pp. doi: https://doi.org/10.2800/777411

  • Gómez-Moreno FJ, Pujadas M, Plaza J, Rodríguez-Maroto JJ, Martínez-Lozano P, Artíñano B (2011) Influence of seasonal factors on the atmospheric particle number concentration and size distribution in Madrid. Atmos Environ 45:3169–3180

    Article  Google Scholar 

  • Holzworth CG (1964) Estimates of mean maximum mixing depths in the contiguous United States. Mon Weather Rev 92:235–242

    Article  Google Scholar 

  • Jaakkola JJ (2003) Case-crossover design in air pollution epidemiology. Eur Resp J 21(40):81–85

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteorol Soc 77:437–470

    Article  Google Scholar 

  • Kleinman MT, Kneip TJ, Eisenbud M (1976) Seasonal patterns of airborne particulate concentrations in New York City. Atmos Environ 10:9–11

    Article  Google Scholar 

  • Levy D, Lumley T, Sheppard L, Kaufman J, Checkoway H (2001) Referent selection in case-crossover analyses of acute health effects of air pollution. Epidemiology 12:186–192

    Article  CAS  Google Scholar 

  • Linares C, Carmona R, Tobías A, Mirón IJ, Díaz J (2015) Influence of advections of particulate matter from biomass combustion on specific-cause mortality in Madrid in the period 2004–2009. Environ Sci Pollut Res 22:7012–7019

    Article  CAS  Google Scholar 

  • Linares C, Falcón I, Ortiz C, Díaz J (2018) An approach estimating the short-term effect of NO2 on daily mortality in Spanish cities. Environ Int 116:18–28

    Article  CAS  Google Scholar 

  • Liu Y, Tang G, Zhou L, Hu B, Liu B, Li Y, Liu S, Wang Y (2019) Mixing layer transport flux of particulate matter in Beijing, China. Atmos Chem Phys 19:9531–9540. https://doi.org/10.5194/acp-19-9531-2019

    Article  CAS  Google Scholar 

  • Llop E, Pinho P, Ribeiro MC, Pereira MJ, Branquinho C (2017) Traffic represents the main source of pollution in small Mediterranean urban areas as seen by lichen functional groups. Environ Sci Pollut Res 24(13):12016–12025

    Article  Google Scholar 

  • López V, Salvador P, Artíñano B, Gomez-Moreno FJ, Fernández J, Molero F (2019) Influence of the origin of the air mass on the background levels of atmospheric particulate matter and secondary inorganic compounds in the Madrid air basin. Environ Sci Pollut Res 26:30426–30443. https://doi.org/10.1007/s11356-019-06205-8

    Article  CAS  Google Scholar 

  • Millán MM, Salvador R, Mantilla E, Artíñano B (1996) Meteorology and photochemical air pollution in southern Europe: experimental results from EC research projects. Atmos Environ 30(12):1909–1924

    Article  Google Scholar 

  • MITECO (2018). Evaluación de la calidad del aire en España. Año 2017. MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA. Technical report. 186 pp. Available at: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/informeevaluacioncalidadaireespana2017_tcm30-481655.pdf, (Last access November 2019)

  • Ortiz C, Linares C, Carmona R, Díaz J (2017) Evaluation of short-term mortality attributable to particulate matter pollution in Spain. Environ Pollut 224:541–551

    Article  CAS  Google Scholar 

  • Pandolfi M, Tobias A, Alastuey A, Sunyer J, Schwartz J, Lorente J, Pey J, Querol X (2014) Effect of atmospheric mixing layer depth variations on urban air quality and daily mortality during Saharan dust outbreaks. Sci Total Environ 494:283–289

    Article  Google Scholar 

  • Pérez L, Tobías A, Querol X, Pey J, Alastuey A, Díaz J, Sunyer J (2012) Saharan dust, particulate matter and cause specific mortality: a case-crossover study in Barcelona (Spain). Environ Int 48:150–155

    Article  Google Scholar 

  • Pujadas M, Plaza J, Terés J, Artíñano B, Millán M (2000) Passive remote sensing of nitrogen dioxide as a tool for tracking air pollution in urban areas: the Madrid urban plume, a case of study. Atmos Environ 34:3041–3056

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Rodríguez S, Viana MM, Artíñano B, Salvador P, Mantilla E, García do Santos S, Fernández Patier R, de la Rosa J, de la Sánchez CA, Menéndez M (2004) Levels of PM in rural, urban and industrial sites in Spain. Sci Total Environ 334-335:359–376

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Moreno T, Viana M, Castillo S, Pey J, Rodríguez S, Artíñano B, Salvador P, Sánchez M, Garcia Dos Santos S, Herce Garraleta M, Fernandez-Patier R, Moreno-Grau S, Negral L, Minguillón M, Monfort E, Sanz M, Palomo-Marín R, Pinilla E, Cuevas E, de la Rosa J, Sánchez de la Campa A (2008) Spatial and temporal variations in air borne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmos Environ 42(17):3964–3979

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Pey J, Escudero M, Castillo S, Orío A, González A, Pallarés M, Jiménez S, Ferreira F, Marques F, Monjardino J, Cuevas E, Alonso S, Artíñano B, Salvador P., De la Rosa J (2013). Procedimiento para identificación de episodios naturales africanos de PM10 y PM2.5, y la demostración de causa en lo referente a las superaciones del valor límite diario de PM10. Scientific Report, 40 pp.. Available at: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/metodologiaparaepisodiosnaturales-revabril2013_tcm30-186522.pdf (Last access November 2019)

  • Querol X, Alastuey A, Pandolfi M, Reche C, Pérez N, Minguillón MC, Moreno T, Viana M, Escudero M, Orio A, Pallarés M, Reina F (2014) 2001–2012 trends on air quality in Spain. Sci Total Environ 490:957–969

    Article  CAS  Google Scholar 

  • Saiz-López A, Borge R, Notario A, Adame JA, de la Paz D, Querol X, Artíñano B, Gómez-Moreno FJ, Cuevas CA (2017) Unexpected increase in the oxidation capacity of the urban atmosphere of Madrid, Spain. Sci Rep 7:45956. https://doi.org/10.1038/srep45956

    Article  CAS  Google Scholar 

  • Salvador P, Artíñano B, Querol X, Alastuey A (2008) A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter: the Madrid air basin, a case study. Sci Total Environ 390:495–506

    Article  CAS  Google Scholar 

  • Salvador P, Artíñano B, Viana MM, Alastuey A, Querol X (2012) Evaluation of the changes in the Madrid metropolitan area influencing air quality: analysis of 1999-2008 temporal trend of particulate matter. Atmos Environ 57:175–185

    Article  CAS  Google Scholar 

  • Salvador P, Artíñano B, Viana MM, Alastuey A, Querol X (2015) Multicriteria approach to interpret the variability of the levels of particulate matter and gaseous pollutants in the Madrid metropolitan area, during the 1999-2012 period. Atmos Environ 109:205–216

    Article  CAS  Google Scholar 

  • Salvador P, Molero F, Fernández A.J, Tobías A, Pandolfi M, Gómez-Moreno F.J, Barreiro M, Pérez N, Martínez Marco I, Revuelta MA, Querol X, Artíñano B (2019). Synergistic effect of the occurrence of African dust outbreaks on atmospheric pollutant levels in the Madrid metropolitan area. Atmos Res, 226, 208–218

  • Seibert P, Beyrich F, Gryning S, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027

    Article  CAS  Google Scholar 

  • Sicard M, Pérez C, Rocadenbosch F, Baldasano JM, García-Vizcaino D (2006) Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: methods, results and limitation. Bound -Layer Meteorol 119:135–157

    Article  Google Scholar 

  • Stafoggia M, the MED-PARTICLES, Study Group (2016) Desert dust outbreaks in southern Europe: contribution to daily PM10 concentrations and short-term associations with mortality and hospital admissions. Environ Health Persp 124:413–419

    Article  Google Scholar 

  • Wang SC, Flagan RC (1990) Scanning electrical mobility spectrometer. Aerosol Sci Technol 13:230–240

    Article  CAS  Google Scholar 

  • Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M (2012) Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos Meas Tech 5:657–685

    Article  CAS  Google Scholar 

  • WHO (2013a). Health risks of air pollution in Europe – HRAPIE project: recommendations for concentration–response functions for cost–benefit analysis of particulate matter, ozone and nitrogen dioxide. World Health Organization, Regional Office for Europe, Copenhagen, Denmark. 54 pp. Available at: http://www.euro.who.int/__data/assets/pdf_file/0006/238956/Health_risks_air_pollution_HRAPIE_project.pdf. (Last access: October 2019)

  • WHO (2013b). Review of evidence on health aspects of air pollution – REVIHAAP Project, Technical Report. Copenhagen: World Health Organization, Regional Office for Europe, Copenhagen, Denmark. 309 pp. Available at: http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report.pdf. (Last access: October 2019)

Download references

Acknowledgements

This research has been partially funded by MINECO/AEI/FEDER, UE (CGL2017-85344-R, CRISOL project) and Madrid Regional Government (Y2018/EMT-5177, TIGAS-CM Project). We also acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT trajectory model (https://www.arl.noaa.gov/hysplit/hysplit/), the Atmospheric Modelling & Weather Forecasting Group - University of Athens (http://forecast.uoa.gr), the Earth Science Department - Barcelona Supercomputing Centre (https://ess.bsc.es/bsc-dust-daily-forecast), the Naval Research Laboratory (https://www.nrlmry.navy.mil/aerosol/) and the NASA (http://modis.gsfc.nasa.gov/) for the provision of the SKIRON, DREAM/BSC-DREAM8b, NAAPs aerosol maps and the satellite imagery, respectively. The authors also acknowledge the Madrid City Council (http://www.mambiente.madrid.es/opencms/opencms/calaire/), the Madrid Regional Government (http://gestiona.madrid.org/azul_internet/run/j/AvisosAccion.icm) and the NOAA/OAR/ESRL PSD, Boulder, CO, USA (http://www.esrl.noaa.gov/psd/data/) for providing access to the data sets of air quality parameters from their air quality monitoring stations and reanalysis global meteorological fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Salvador.

Additional information

Responsible editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvador, P., Pandolfi, M., Tobías, A. et al. Impact of mixing layer height variations on air pollutant concentrations and health in a European urban area: Madrid (Spain), a case study. Environ Sci Pollut Res 27, 41702–41716 (2020). https://doi.org/10.1007/s11356-020-10146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10146-y

Keywords

Navigation