Skip to main content
Log in

Effect of temperature on microcystin-LR removal and lysis activity on Microcystis aeruginosa (cyanobacteria) by an indigenous bacterium belonging to the genus Achromobacter

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microcystis is a frequent cyanobacterium bloom-forming with cosmopolitan distribution which can produce a hepatotoxin group called microcystins (MCs). These MCs are resistant to the traditional processes employed in the water treatment plants and they are often detected after conventional treatments. Because of this, the bio-removal studies have obtained a great interest in the last decades. In this work, a bacterial strain namely LG1 with the ability to remove microcystin-LR (MC-LR) under laboratory conditions was isolated from Rio de la Plata River and it was identified as Achromobacter spp. This ubiquitous bacterium was able to remove 79.5% MC-LR in 7 days with average removal time of 3.33 ± 0.08, 3.06 ± 0.05, and 2.77 ± 0.05 days at 28, 32, and 36 ± 1 °C, being higher at high temperature (36 °C) with an activation energy = 16.79 ± 1.99 kJ mol−1. LG1 grew better at higher temperature (from 28 to 36 ± 1 °C) increasing the specific growth rate (μ) and reducing 2-fold the lag phase duration (LPD) without significant differences (p > 0.05) between maximum population density (MPD). In addition, LG1 showed a lysis activity on two M. aeruginosa native strains in 7 days measured as chlorophyll a (Chl-a) concentration. The lysis activity increased around 2-fold when increasing the temperature from 28 to 36 ± 1 °C. This is the first report of an indigenous bacterium belonging to the genus Achromobacter spp. isolated from the Rio de la Plata River with the capacity to remove MC-LR and lysis activity on M. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed M, Focht DD (1973) Degradation of polychlorinated biphenyls by two species of Achromobacter. Can J Microbiol 19(1):47–52

    CAS  Google Scholar 

  • Alamri S A (2012) Biodegradation of microcystin-RR by Bacillus flexus isolated from a Saudi freshwater lake. Saudi J Biol Sci 19(4):435–440

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    CAS  Google Scholar 

  • Amé MV, Ricardo EJ, Stephan P, Alberto WD (2006) Degradation of microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Córdoba–Argentina). Biodegradation 17(5):447–455

  • Amé MV, Galanti LN, Menone ML, Gerpe MS, Moreno VJ, Wunderlin DA (2010) Microcystin–lr,–rr,–yr and–la in water samples and fishes from a shallow lake in Argentina. Harmful Algae 9(1):66–73

    Google Scholar 

  • Andrinolo D, Pereira P, Giannuzzi L, Aura C, Massera S, Caneo M, Caixach J, Barco M, Echenique R (2007) Occurrence of Microcystis aeruginosa and microcystins in Río de la Plata river (Argentina). Acta Toxicol Argent 15(1):8–14

    Google Scholar 

  • Bourne DG, Jones GJ, Blakeley RL, Jones A, Negri AP, Riddles P (1996) Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin-LR. Appl Environ Microbiol 62(11):4086–4094

    CAS  Google Scholar 

  • Bourne DG, Riddles P, Jones GJ, Smith W, Blakeley RL (2001) Characterization of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin-LR. Environ Toxicol 16(6):523–534

    CAS  Google Scholar 

  • Carmichael W (1992) Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Microbiol 72(6):445–459

    CAS  Google Scholar 

  • Chen J, Xie P, Zhang D, Ke Z, Yang H (2006) In situ studies on the bioaccumulation of microcystins in the phytoplanktivorous silver carp (Hypophthalmichthys molitrix) stocked in Lake Taihu with dense toxic microcystis blooms. Aquaculture 261(3):1026–1038

    CAS  Google Scholar 

  • Chen J, Hu LB, Zhou W, Yan SH, Yang JD, Xue YF, Shi ZQ (2010) Degradation of microcystin-LR and -RR by a Stenotrophomonas sp. strain EMS isolated from Lake Taihu, China. Int J Mol Sci 11(3):896–911

    CAS  Google Scholar 

  • Christoffersen K, Lyck S, Winding A (2002) Microbial activity and bacterial community structure during degradation of microcystins. Aquat Microb Ecol 27(2):125–136

    Google Scholar 

  • Crettaz-Minaglia MC, Andrinolo D, Giannuzzi L (2015) Advances in microbiological degradation of microcystins. Cyanobacteria: Ecological Importance, Biotechnological Uses and Risk Management, pages 113–124

  • Crettaz-Minaglia MC, Rosso L, Aranda O, Goñi S, Sedan D, Andrinolo D, Giannuzzi L (2017) Mathematical modeling of Microcystis aeruginosa growth and [D-leu1] microcystin-LR production in culture media at different temperatures. Harmful Algae 67:13–25

    Google Scholar 

  • Daft MJ, McCord SB, Stewart WDP (1975) Ecological studies on algal-lysing bacteria in fresh waters. Freshw Biol 5(6):577–596

    Google Scholar 

  • De León L (2002) Floraciones de cianobacterias en aguas continentales del Uruguay: causas y consecuencias. Perfil Ambiental del Uruguay 2002, Domínguez A, Prieto RG, Nordan-Comunidad, Montevideo, pp. 28–37

  • Diaz R, Gamazo C, Lopez-Goñi I (1995) Manual práctico de Microbiología. Allergol Immunopathol 23:47–47

    Google Scholar 

  • Drikas M, Chow CW, House J, Burch MD (2001) Toxic cyanobacteria. Am Water Works Assoc J 93(2):100

    Google Scholar 

  • Dziga D, Wasylewski M, Szetela A, Bocheńska O, Wladyka B (2012) Verification of the role of MlrC in microcystin biodegradation by studies using a heterologously expressed enzyme. Chem Res Toxicol 25:1192–1194

    CAS  Google Scholar 

  • Dziga D, Wasylewski M, Wladyka B, Nybom S, Meriluoto J (2013) Microbial degradation of microcystins. Chem Res Toxicol 26(6):841–852

    CAS  Google Scholar 

  • Echenique R, Rodríguez J, Caneo M, Giannuzzi L, Barco M, Rivera J, Caixach J, Andrinolo D (2006) Microcystins in the drinking water supply in the cities of Ensenada and La Plata (Argentina). In Congresso Brasileiro de Ficología & Simposio Latino-Americano de Algas Nocivas

  • Edwards C, Lawton LA (2009) Bioremediation of cyanotoxins. Adv Appl Microbiol 67:109–129

  • Eleuterio L, Batista JR (2010) Biodegradation studies and sequencing of microcystin-LR degrading bacteria isolated from a drinking water biofilter and a freshwater lake. Toxicon 55(8):1434–1442

    CAS  Google Scholar 

  • Foss AJ, Miles CO, Samdal IA, Løvberg KE, Wilkins AL, Rise F et al (2018) Analysis of free and metabolized microcystins in samples following a bird mortality event. Harmful Algae 80:117–129

    CAS  Google Scholar 

  • Gaete V, Canelo E, Lagos N, Zambrano F (1994) Inhibitory effects of Microcystis aeruginosa toxin on ion pumps of the gill of freshwater fish. Toxicon 32(1):121–127

    CAS  Google Scholar 

  • Giannuzzi L, Pinotti A, Zaritzky N (1998) Mathematical modelling of microbial growth in packaged refrigerated beef stored at different temperatures. Int J Food Microbiol 39(1–2):101–110

  • Giannuzzi L, Carvajal G, Corradini M, Araujo Andrade C, Echenique R, Andrinolo D (2012) Occurrence of toxic cyanobacterial blooms in Rio de la Plata estuary, Argentina: field study and data analysis. J Toxicol, 2012

  • Giaramida L, Manage PM, Edwards C, Singh BK, Lawton LA (2013) Bacterial communities response to microcystins exposure and nutrient availability: linking degradation capacity to community structure. Int Biodeterior Biodegradation 84:111–117

    CAS  Google Scholar 

  • Gumbo JR, Ross G, Cloete TE (2010) The isolation and identification of predatory bacteria from a Microcystis algal bloom. Afr J Biotechnol, 9(5)

  • Harada K-i, Imanishi S, Kato H, Mizuno M, Ito E, Tsuji K (2004) Isolation of ADDA from microcystin-LR by microbial degradation. Toxicon 44(1):107–109

    CAS  Google Scholar 

  • Ho L, Meyn T, Keegan A, Hoefel D, Brookes J, Saint CP, Newcombe G (2006) Bacterial degradation of microcystin toxins within a biologically active sand filter. Water Res 40(4):768–774

    CAS  Google Scholar 

  • Ho L, Hoefel D, Saint CP, Newcombe G (2007) Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Res 41(20):4685–4695

    CAS  Google Scholar 

  • Hoeger SJ, Hitzfeld BC, Dietrich DR (2005) Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicol Appl Pharmacol 203(3):231–242

    CAS  Google Scholar 

  • Hu L, Zhang F, Liu C, Wang M (2012) Biodegradation of microcystins by Bacillus sp. strain EMB. Energy Procedia 16:2054–2059

    CAS  Google Scholar 

  • Ishii H, Nishijima M, Abe T (2004) Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium. Water Res 38(11):2667–2676

    CAS  Google Scholar 

  • Jeukens J, Freschi L, Vincent AT, Emond-Rheault JG, Kukavica-Ibrulj I, Charette SJ, Levesque RC (2017) A pan-genomic approach to understand the basis of host adaptation in Achromobacter. Genome Biol Evol 9(4):1030–1046

    CAS  Google Scholar 

  • Jones GJ, Bourne DG, Blakeley RL, Doelle H (1994) Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Nat Toxins 2(4):228–235

    CAS  Google Scholar 

  • Kang Y-H, Park C-S, Han M-S (2012) Pseudomonas aeruginosa UCBPP-pa14 a useful bacterium capable of lysing Microcystis aeruginosa cells and degrading microcystins. J Appl Phycol 24(6):1517–1525

    CAS  Google Scholar 

  • Kansole MM, Lin TF (2016) Microcystin-LR biodegradation by Bacillus sp.: reaction rates and possible genes involved in the degradation. Water 8(11):508

  • Koneman EW, Allen S (2008) Koneman. Diagnostico Microbiologico/Microbiological diagnosis: Texto Y Atlas En Color/Text and Color Atlas. Ed. Médica Panamericana

  • Kong L, Zhu S, Zhu L, Xie H, Su K, Yan T et al (2013) Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J Environ Sci 25(11):2257–2264

    CAS  Google Scholar 

  • Lahiti K, Hiisvirta L (1989) Removal of cyanobacterial toxins in water treatment processes: review of studies conducted in Finland. Water Supply 7(4):149–154

    Google Scholar 

  • Lee YK, Ahn CY, Kim HS, Oh HM (2010) Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp. Biotechnol Lett 32(11):1673–1678

    CAS  Google Scholar 

  • Lemes GA, Kersanach R, Pinto L d S, Dellagostin OA, Yunes JS, Matthiensen A (2008) Biodegradation of microcystins by aquatic Burkholderia sp. from a south Brazilian coastal lagoon. Ecotoxicol Environ Saf 69(3):358–365

    CAS  Google Scholar 

  • Li H, Pan G (2015) Simultaneous removal of harmful algal blooms and microcystins using microorganism-and chitosan-modified local soil. Environ Sci Technol 49(10):6249–6256

    CAS  Google Scholar 

  • Li H, Ai H, Kang L, Sun X, He Q (2016) Simultaneous Microcystis algicidal and Microcystin degrading capability by a single Acinetobacter bacterial strain. Environ Sci Technol 50(21):11,903–11,911

    CAS  Google Scholar 

  • Ma YL, Lu W, Wan LL, Luo N (2015) Elucidation of fluoranthene degradative characteristics in a newly isolated Achromobacter xylosoxidans DN002. Appl Biochem Biotechnol 175(3):1294–1305

    CAS  Google Scholar 

  • MacFaddin JF (2003) Pruebas bioquímicas para la identificación de bacterias de importancia clínica. Ed. Médica Panamericana

  • MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2a from both mammals and higher plants. FEBS Lett 264(2):187–192

    CAS  Google Scholar 

  • Manage PM, Kawabata Z, Nakano S (2000) Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquat Microb Ecol 22(2):111–117

    Google Scholar 

  • Marker A (1972) The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshw Biol 2(4):361–385

    Google Scholar 

  • Matthiensen A, Beattie KA, Yunes JS, Kaya K, Codd GA (2000) [D-Leu1] Microcystin-LR, from the cyanobacterium Microcystis RST 9501 and from a Microcystis bloom in the Patos Lagoon estuary, Brazil. Phytochemistry 55(5):383–387

    CAS  Google Scholar 

  • Nakamura N, Nakano K, Sugiura N, Matsumura M (2003) A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a eutrophic lake. J Biosci Bioeng 95(2):179–184

    CAS  Google Scholar 

  • Okano K, Shimizu K, Kawauchi Y, Maseda H, Utsumi M, Zhang Z, Neilan BA, Sugiura N (2010) Characteristics of a microcystin-degrading bacterium under alkaline environmental conditions. J Toxicol, 2009

  • Okano K, Shimizu K, Maseda H, Kawauchi Y, Utsumi M, Itayama T et al (2015) Whole-genome sequence of the microcystin-degrading bacterium Sphingopyxis sp. strain C-1. Genome Announc 3(4):e00838–e00815

    Google Scholar 

  • Paerl HW, Fulton RS, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J 1:76–113

    CAS  Google Scholar 

  • Park H-D, Sasaki Y, Maruyama T, Yanagisawa E, Hiraishi A, Kato K (2001) Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ Toxicol 16(4):337–343

    CAS  Google Scholar 

  • Park H, Namikoshi M, Brittain SM, Carmichael WW, Murphy T (2001a) [D-Leu1] microcystin-LR, a new microcystin isolated from waterbloom in a Canadian prairie lake. Toxicon 39(6):855–862

    CAS  Google Scholar 

  • Qi Y, Rosso L, Sedan D, Giannuzzi L, Andrinolo D, Volmer DA (2015) Seven new microcystin variants discovered from a native Microcystis aeruginosa strain–unambiguous assignment of productions by tandem mass spectrometry. Rapid Commun Mass Spectrom 29(2):220–224

    CAS  Google Scholar 

  • Rehfuss M, Urban J (2005) Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor. Syst Appl Microbiol 28(5):421–429

    CAS  Google Scholar 

  • Ren H, Zhang P, Liu C, Xue Y, Lian B (2010) The potential use of bacterium strain R219 for controlling of the bloom-forming cyanobacteria in freshwater lake. World J Microbiol Biotechnol 26(3):465–472

    CAS  Google Scholar 

  • Ren G, He X, Wu P, He Y, Zhang Y, Tang S, ..., Yang F (2020) Biodegradation of microcystin-RR and nutrient pollutants using Sphingopyxis sp. YF1 immobilized activated carbon fibers-sodium alginate. Environ Sci Pollut Res, 1–11

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1):1–61

    Google Scholar 

  • Rosso L, Sedan DY, Kolman MdLA, Caixach J, Flores C, Oteiza JM, Salerno GL, Echenique R, Giannuzzi L, Andrinolo D (2014) Microcystis aeruginosa strain [d-leu1] mcyst-LR producer, from Buenos Aires province, Argentina. J Coast Life Med, pages 287–296

  • Saito T, Okano K, Park H-D, Itayama T, Inamori Y, Neilan BA, Burns BP, Sugiura N (2003) Detection and sequencing of the microcystin LR-degrading gene, mlra, from new bacteria isolated from Japanese lakes. FEMS Microbiol Lett 229(2):271–276

    CAS  Google Scholar 

  • Saitou T, Sugiura N, Itayama T, Inamori Y, Matsumura M (2003) Degradation characteristics of microcystins by isolated bacteria from lake Kasumigaura. J Water Supply Res Technol AQUA 52(1):13–18

    CAS  Google Scholar 

  • Sakurad A (2012) Achromobacter xylosoxidans. Rev Chil Infectol 29(4):453–454. https://doi.org/10.4067/S0716-10182012000400016

    Article  Google Scholar 

  • Sanchis D, Carrasco D, Quesada A (2004) The genus Microcystis (microcystaceae/cyanobacteria) from a Spanish reservoir: a contribution to the definition of morphological variations. Nova Hedwigia 79(3–4):479–495

    Google Scholar 

  • Shimizu K, Maseda H, Okano K, Itayama T, Kawauchi Y, Chen R, Utsumi M, Zhang Z, Sugiura N (2011) How microcystin-degrading bacteria express microcystin degradation activity. Lakes Reserv Res Manag 16(3):169–178

    CAS  Google Scholar 

  • Shimizu K, Maseda H, Okano K, Kurashima T, Kawauchi Y, Xue Q et al (2012) Enzymatic pathway for biodegrading microcystin LR in Sphingopyxis sp. C-1. J Biosci Bioeng 114(6):630–634

    CAS  Google Scholar 

  • Shishido TK, Kaasalainen U, Fewer DP, Rouhiainen L, Jokela J, Wahlsten M, ... Sivonen K (2013). Convergent evolution of [D-Leucine 1] microcystin-LR in taxonomically disparate cyanobacteria. BMC Evol Biol 13(1):1–16

  • Singh NS, Singh DK (2011) Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation 22(5):845–857

    CAS  Google Scholar 

  • Snedecor C, Cochran M (1969) Statistical methode 6th ed. The Iowa State Univ., Press, Iowa

  • Su FJ, Ma M, Wei L, Ma F, Lu SJ, Shao S (2016) Algicidal and denitrification characterization of Acinetobacter sp. J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water. Mar Pollut Bull 107(1):233–239

    CAS  Google Scholar 

  • Subhraveti P, Midford P, Keseler I, Kothari A, Caspi R, Karp PD (2019) Summary of Achromobacter insuavis, Strain AXX-A, version 23.5. https://biocyc.org/organism-summary?object=GCF_000219745.

  • Sun P, Lin H, Wang G, Zhang X, Zhang Q, Zhao Y (2015) Wheat bran enhances the cytotoxicity of immobilized Alcaligenes aquatilis F8 against Microcystis aeruginosa. PLoS One 10(8):e0136429

    Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    CAS  Google Scholar 

  • WHO (1998) Guidelines for drinking-water quality. Vol. 2, health criteria and other supporting information: addendum

  • Yamamoto Y, Niizuma S, Kuroda N, Sakamoto M (1993) Occurrence of heterotrophic bacteria causing lysis of cyanobacteria in a eutrophic lake. Jpn J Phycol. Sapporo 41(3):215–220

    CAS  Google Scholar 

  • Yan H, Wang H, Wang J, Yin C, Ma S, Liu X, Yin X (2012a) Cloning and expression of the first gene for biodegrading microcystin LR by Sphingopyxis sp. ustb-05. J Environ Sci 24(10):1816–1822

    CAS  Google Scholar 

  • Yan H, Wang J, Chen J, Wei W, Wang H, Wang H (2012b) Characterization of the first step involved in enzymatic pathway for microcystin-RR biodegraded by Sphingopyxis sp. ustb-05. Chemosphere 87(1):12–18

    CAS  Google Scholar 

  • Yang F, Li X, Li Y, Wei H, Yu G, Yin L et al (2013) Lysing activity of an indigenous algicidal bacterium Aeromonas sp. against Microcystis spp. isolated from Lake Taihu. Environ Technol 34(11):1421–1427

    CAS  Google Scholar 

  • Yang F, Zhou Y, Yin L, Zhu G, Liang G, Pu Y (2014) Microcystin-degrading activity of an indigenous bacterial strain Stenotrophomonas acidaminiphila MC-LTH2 isolated from Lake Taihu. PloS one 9(1):e86216

  • Zhang D, Xie P, Chen J (2010) Effects of temperature on the stability of microcystins in muscle of fish and its consequences for food safety. Bull Environ Contam Toxicol 84(2):202–207

    CAS  Google Scholar 

  • Zhang H, Yu Z, Huang Q, Xiao X, Wang X, Zhang F, Wang X, Liu Y, Hu C (2011) Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22 against Microcystis aeruginosa. Limnologica 41(1):70–77

    CAS  Google Scholar 

  • Zhang L, Gu L, Wei Q, Zhu X, Wang J, Wang X, Yang Z (2017) High temperature favors elimination of toxin-producing Microcystis and degradation of microcystins by mixotrophic Ochromonas. Chemosphere 172:96–102

  • Zhang X, Yang F, Chen L, Feng H, Yin S, Chen M (2020) Insights into ecological roles and potential evolution of Mlr-dependent microcystin-degrading bacteria. Sci Total Environ, 136401

  • Zhao CP, Pu YP, Yin LH, Lu XW, Li XN (2005) Isolation and algicidal effect of a lytic Microcystis bacterium from Taihu Lake. J Southwest Univ 35(4):602–605

    CAS  Google Scholar 

Download references

Funding

This study was financially supported by the University National of La Plata (UNLP X526), National Agency of Scientific and Technical Research (PICT0861-2013), and CONICET(PIP0959).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melina Crettaz-Minaglia.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• This work provides experimental data and mathematical modeling of the MC-LR removal and Microcystis aeruginosa lysis activity on two temperate strains by novel Achromobacter spp. isolated from Rio de La Plata River (Argentina).

• It provides data about bacterial growth parameters using Gompertz model. It also provides evidence of the possible environmental biotransformation of this cyanotoxin and bloom senescence.

• Its use as ex situ treatment must be deepened and scaled according to the best conditions assayed in the present work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crettaz-Minaglia, M., Fallico, M., Aranda, O. et al. Effect of temperature on microcystin-LR removal and lysis activity on Microcystis aeruginosa (cyanobacteria) by an indigenous bacterium belonging to the genus Achromobacter. Environ Sci Pollut Res 27, 44427–44439 (2020). https://doi.org/10.1007/s11356-020-09901-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09901-y

Keywords

Navigation