Skip to main content
Log in

Anaerobic methane oxidation coupled to chromate reduction in a methane-based membrane biofilm batch reactor

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Chromate can be reduced by methanotrophs in a membrane biofilm reactor (MBfR). In this study, we cultivated a Cr(VI)-reducing biofilm in a methane (CH4)-based membrane biofilm batch reactor (MBBR) under anaerobic conditions. The Cr(VI) reduction rate increased to 0.28 mg/L day when the chromate concentration was ≤ 2.2 mg/L but declined sharply to 0.01 mg/L day when the Cr(VI) concentration increased to 6 mg/L. Isotope tracing experiments showed that part of the 13C-labeled CH4 was transformed to 13CO2, suggesting that the biofilm may reduce Cr(VI) by anaerobic methane oxidation (AnMO). Microbial community analysis showed that a methanogen, i.e., Methanobacterium, dominated in the biofilm, suggesting that this genus is probably capable of carrying out AnMO. The abundance of Methylomonas, an aerobic methanotroph, decreased significantly, while Meiothermus, a potential chromate-reducing bacterium, was enriched in the biofilm. Overall, the results showed that the anaerobic environment inhibited the activity of aerobic methanotrophs while promoting AnMO bacterial enrichment, and high Cr(VI) loading reduced Cr(VI) flux by inhibiting the methane oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake R II, Matin A (2010) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860

    Article  CAS  Google Scholar 

  • Barnhart J (1997) Occurrences, uses, and properties of chromium. Regul Toxicol Pharmacol 26:3–7

    Article  Google Scholar 

  • Cakir FY, Stenstrom MK (2005) Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology. Water Res 39(17):4197–4203

  • Diederik JO, Lizelle AP, Esta VH (2008) A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bacteriol 190:3076–3082

    Article  CAS  Google Scholar 

  • Dragun J (1988) The soil chemistry of hazardous materials. Hazardous Materials Control Research Institute, Silver Spring

    Google Scholar 

  • Ettwig KF, Butler MK, Paslier DL, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, De Beer D (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  Google Scholar 

  • Garcia EA, Gomis DB (1997) Speciation analysis of chromium using crypt and ethers. Analyst 122:899–902

    Article  Google Scholar 

  • Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570

    Article  CAS  Google Scholar 

  • Hu BL, Shen LD, Lian X, Zhu Q, Liu S, Huang Q, He ZF, Geng S, Cheng DQ, Lou LP, Xu XY, Zheng P, He YF (2014) Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc Natl Acad Sci U S A 111:4495–4500

    Article  CAS  Google Scholar 

  • Kantar C, Cetin Z, Demiray H (2008) In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids. J Hazard Mater 159:287–293

    Article  CAS  Google Scholar 

  • Kathiravan MN, Karthick R, Muthukumar K (2011) Ex situ bioremediation of Cr(VI) contaminated soil by Bacillus sp.: batch and continuous studies. Chem Eng J 169:107–115

    Article  CAS  Google Scholar 

  • Knittel K, Losekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479

    Article  CAS  Google Scholar 

  • Lai CY, Yang X, Tang YN, Rittmann BE, Zhao HP (2014) Nitrate shaped the selenate-reducing microbial community in a hydrogen-based biofilm reactor. Environ Sci Technol 48:3395–3402

    Article  CAS  Google Scholar 

  • Lai CY, Wen LL, Zhang Y, Luo SS, Wang QY, Luo YH, Chen R, Yang X, Rittmann BE, Zhao HP (2016a) Autotrophic antimonate bio-reduction using hydrogen as the electron donor. Water Res 88:467–474

    Article  CAS  Google Scholar 

  • Lai CY, Zhong L, Zhang Y, Chen JX, Wen LL, Shi LD, Sun YP, Ma F, Rittmann BE, Zhou C, Tang YN, Zheng P, Zhao HP (2016b) Bioreduction of chromate in a methane-based membrane biofilm reactor. Environ Sci Technol 50:5832–5839

    Article  CAS  Google Scholar 

  • Lai CY, Dong QY, Chen JX, Zhu QS, Yang X, Chen WD, Zhao HP, Zhu L (2018a) Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate. Environ Sci Technol 52:10680–10688

    Article  CAS  Google Scholar 

  • Lai CY, Dong QY, Rittmann BE, Zhao HP (2018b) Bioreduction of antimonate by anaerobic methane oxidation in a membrane biofilm batch reactor. Environ Sci Technol 52:8693–8700

    Article  CAS  Google Scholar 

  • Lai CY, Lv PL, Dong QY, Yeo SL, Rittmann B, Zhao HP (2018c) Bromate and nitrate bioreduction coupled with poly-β-hydroxybutyrate production in a methane-based membrane biofilm reactor. Environ Sci Technol 52:7024–7031

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  CAS  Google Scholar 

  • Lu YZ, Fu L, Ding J, Ding ZW, Li N, Zeng RJ (2016) Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor. Water Res 102:445–452

    Article  CAS  Google Scholar 

  • Luo J, Chen H, Hu S, Cai C, Yuan ZG, Guo JH (2018) Microbial selenate reduction driven by a denitrifying anaerobic methane oxidation biofilm. Environ Sci Technol 52:4006–4012

    Article  CAS  Google Scholar 

  • Lv PL, Zhong L, Dong QY, Yang SL, Shen WW, Zhu QS, Lai CY, Luo AC, Tang Y, Zhao HP (2018) The effect of electron competition on chromate reduction using methane as electron donor. Environ Sci Pollut Res 25(7):6609–6618

    Article  CAS  Google Scholar 

  • Lv PL, Shi LD, Wang Z, Rittmann BE, Zhao HP (2019) Methane oxidation coupled to perchlorate reduction in a membrane biofilm batch reactor. Sci Total Environ 667:9–15

    Article  CAS  Google Scholar 

  • Maeda H, Fujimoto C, Haruki Y, Maeda T, Kokeguchi S, Petelin M, Arai H, Tanimoto I, Nishimura F and Takashiba S, (2003) Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunology & Medical Microbiology, 39(1):81–86

  • Martin KJ, Nerenberg R (2012) The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour Technol 122:83–94

    Article  CAS  Google Scholar 

  • Meyer KJ, Swaim P D, Bellamy WD, Rittmann BE, Tang YN, Scott R (2010) Biological and ion exchange nitrate removal: performance and sustainability evaluation, Final Project Report, Water Research Foundation: Denver, CO

  • Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41:2726–2738

    Article  CAS  Google Scholar 

  • Moran JJ, House CH, Freeman KH, Ferry JG (2014) Trace methane oxidation studied in several euryarchaeota under diverse conditions. Archaea 5:303

    Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, Mckeegan KD, Delong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Article  CAS  Google Scholar 

  • Rittmann, McCarty (2002) Environmental biotechnology: principles and applications. McGraw-Hill

  • Sahinkaya E, Kilic A, Calimlioglu B, Toker Y (2013) Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process. J Hazard Mater 262:234–239

    Article  CAS  Google Scholar 

  • Smith WA, Apel WA, Petersen JN, Peyton BM (2002) Effect of carbon and energy source on bacterial chromate reduction. Bioremediat J 6:205–215

    Article  CAS  Google Scholar 

  • Sun Y, Wolcott RD, Dowd SE (2011) Tag-encoded FLX amplicon pyrosequencing for the elucidation of microbial and functional gene diversity in any environment. In: Kwon Y, Ricke S (eds) High-throughput next generation sequencing. Methods in molecular biology (Methods and Protocols) 733. Humana Press, Totowa

    Google Scholar 

  • Viamajala S, Peyton BM, Sani RK, Apel WA, Petersen JN (2008) Toxic effects of chromium(VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1. Biotechnol Prog 20:87–95

    Article  CAS  Google Scholar 

  • Wang DB, Wang YL, Liu YW, Ngo HH, Lian Y, Zhao JW, Chen F, Yang Q, Zeng GM, Li XM (2017a) Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants? Bioresour Technol 234:456–465

    Article  CAS  Google Scholar 

  • Wang GY, Zhang BG, Li S, Yang M, Yin CC (2017b) Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4. Bioresour Technol 227:353–358

    Article  CAS  Google Scholar 

  • Wang S, Zhang BG, Diao MH, Shi JX, Jiang YF, Cheng YT, Liu H (2018) Enhancement of synchronous bio-reductions of vanadium (V) and chromium (VI) by mixed anaerobic culture. Environ Pollut 242:249–256

    Article  CAS  Google Scholar 

  • World Health Organization (2011) Guidelines for drinking-water quality, 4th edn. WHO Press, Geneva

    Google Scholar 

  • Zahoor A, Rehman A (2009) Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci China 21:814–820

    Article  CAS  Google Scholar 

  • Zehnder AJB, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137:420–432

    CAS  Google Scholar 

  • Zhang BG, Feng CP, Ni JR, Zhang J, Huang WL (2013) Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. J Power Sources 204:34–39

    Article  CAS  Google Scholar 

  • Zhong L, Lai CY, Shi LD, Wang KD, Dai YJ, Liu YW, Ma F, Rittmann BE, Zheng P, Zhao HP (2017) Nitrate effects on chromate reduction in a methane-based biofilm. Water Res 115:130–137

    Article  CAS  Google Scholar 

  • Zhou Y, Guo H, Lu H, Mao R, Zheng H, Wang J (2015) Analytical methods and application of stable isotopes in dissolved organic carbon and inorganic carbon in groundwater. Rapid Commun Mass Spectrom 29:1827–1835

    Article  CAS  Google Scholar 

Download references

Funding

The authors greatly thank the National Natural Science Foundation of China (grant nos. 21577123, 51878596) and Natural Science Funds for Distinguished Young Scholar of Zhejiang Province (LR17B070001) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Yu Lai or He-Ping Zhao.

Additional information

Responsible editor: Gerald Thouand

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, QY., Wang, Z., Shi, LD. et al. Anaerobic methane oxidation coupled to chromate reduction in a methane-based membrane biofilm batch reactor. Environ Sci Pollut Res 26, 26286–26292 (2019). https://doi.org/10.1007/s11356-019-05709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05709-7

Keywords

Navigation