Skip to main content
Log in

Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Previous work documented complete perchlorate reduction in a membrane biofilm reactor (MBfR) using methane as the sole electron donor and carbon source. This work explores how the biofilm’s microbial community evolved as the biofilm stage-wise reduced different combinations of perchlorate, nitrate, and nitrite. The initial inoculum, carrying out anaerobic methane oxidation coupled to denitrification (ANMO-D), was dominated by uncultured Anaerolineaceae and Ferruginibacter sp. The microbial community significantly changed after it was inoculated into the CH4-based MBfR and fed with a medium containing perchlorate and nitrite. Archaea were lost within the first 40 days, and the uncultured Anaerolineaceae and Ferruginibacter sp. also had significant losses. Replacing them were anoxic methanotrophs, especially Methylocystis, which accounted for more than 25 % of total bacteria. Once the methanotrophs became important, methanol-oxidizing denitrifying bacteria, namely, Methloversatilis and Methylophilus, became important in the biofilm, probably by utilizing organic matter generated by the metabolism of methanotrophs. When methane consumption was equal to the maximum-possible electron-donor supply, Methylomonas, also an anoxic methanotroph, accounted for >10 % of total bacteria and remained a major part of the community until the end of the experiments. We propose that aerobic methane oxidation coupled to denitrification and perchlorate reduction (AMO-D and AMO-PR) directly oxidized methane and reduced NO3 to NO2 or N2O under anoxic condition, producing organic matter for methanol-assimilating denitrification and perchlorate reduction (MA-D and MA-PR) to reduce NO3 . Simultaneously, bacteria capable of anaerobic methane oxidation coupled to denitrification and perchlorate reduction (ANMO-D and ANMO-PR) used methane as the electron donor to respire NO3 or ClO4 directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  CAS  Google Scholar 

  • Bender KS, Shang C, Chakraborty R, Belchik SM, Coates JD, Achenbach LA (2005) Identification, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol 187:5090–5096

    Article  CAS  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) Pynast: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  Google Scholar 

  • Chaudhuri SK, O’Connor SM, Gustavson RL, Achenbach LA, Coates JD (2002) Environmental factors that control microbial perchlorate reduction. Appl Environ Microbiol 68:4425–4430

    Article  CAS  Google Scholar 

  • Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev 2:569–580

    CAS  Google Scholar 

  • Coates JD, Michaelidou U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65:5234–5241

    CAS  Google Scholar 

  • Dam B, Dam S, Blom J, Liesack W (2013) Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2. Plos One. doi:10.1371/journal.pone.0074767

    Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16s rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  Google Scholar 

  • Dimitri Kits K, Klotz MG, Stein LY (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacteria Methylomonas denitrificans sp. nov., type strain FJG1. Environ Microbiol. doi:10.1111/1462-2920.12772

    Google Scholar 

  • Doronina N, Ivanova E, Trotsenkoa Y, Pshenichnikovab A, Kalininab E, Shvetsb V (2005) Methylophilus quaylei sp. nov., a new aerobic obligately methylotrophic bacterium. Syst Appl Microbiol 28:303–309

    Article  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than blast. Bioinformatics 26:2460–2461

    Article  CAS  Google Scholar 

  • Eisentraeger A, Klag P, Vansbotter B, Heymann E, Dott W (2001) Denitrification of groundwater with methane as sole hydrogen donor. Water Res 35:2261–2267

    Article  CAS  Google Scholar 

  • Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75:3656–3662

    Article  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:544–548

    Article  Google Scholar 

  • Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J, Blackall LL (2004) Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol 70:588–596

    Article  CAS  Google Scholar 

  • Haroon MF, Hu SH, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan ZG (2013) Anaerobic oxidation of methane coupled to nitrate reduction in anovel archaeal lineage. Nature 500:567–570

    Article  CAS  Google Scholar 

  • He ZF, Geng S, Shen LD, Lou LP, Zheng P, Xu XY, Hu BL (2015) The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. Water Res 68:554–562

    Article  CAS  Google Scholar 

  • Hu S, Zeng RJ, Burow LC, Lant P, Keller J, Yuan ZG (2009) Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ Microbiol Rep 1:845–854

    Article  Google Scholar 

  • Hu SH, Raymond JZ, Mohamed FH, Jurg K, Paul AL, Gene WT, Yuan ZG (2015) A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments. Sci Rep 5:8706. doi:10.1038/srep08706

    Article  CAS  Google Scholar 

  • Knowles R (2005) Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecol Eng 24:441–446

    Article  Google Scholar 

  • Lai CY, Yang XE, Tang YN, Rittmann BE, Zhao HP (2014) Nitrate shaped the selenate-reducing microbial community in a hydrogen-based biofilm reactor. Environ Sci Technol 48:3395–3402

    Article  CAS  Google Scholar 

  • Logan BE, Zhang H, Mulvaney P, Milner MG, Head IM, Unz RF (2001) Kinetics of perchlorate- and chlorate-respiring bacteria. Appl Environ Microbiol 67:2499–2506

    Article  CAS  Google Scholar 

  • Lozupone C, Hamady M, Knight R (2006) UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinf 7:371–385

    Article  Google Scholar 

  • Luo YH, Chen R, Wen LL, Meng F, Lai CY, Rittmann BE, Zhao HP, Zhen P (2015) Complete perchlorate reduction using methane as the sole electron donor and carbon source. Environ Sci Technol 49:2341–2349

    Article  CAS  Google Scholar 

  • Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41:2726–2738

    Article  CAS  Google Scholar 

  • Modin O, Fukushi K, Nakajima F, Yamamoto K (2010) Nitrate removal and biofilm characteristics in methanotrophic membrane biofilm reactors with various gas supply regimes. Water Res 44:85–96

    Article  CAS  Google Scholar 

  • Nerenberg R, Rittmann BE, Najm I (2002) Perchlorate reduction in a hydrogen-based membrane-biofilm reactor. J Am Water Works Assoc 94:103–114

    CAS  Google Scholar 

  • Nerenberg R, Kawagoshi Y, Rittmann BE (2008) Microbial ecology of a perchlorate-reducing, hydrogen-based membrane biofilm reactor. Water Res 42:1151–1159

    Article  CAS  Google Scholar 

  • Ontiveros-Valencia A, Tang YN, Zhao HP, Friese D, Ryan O, Smith J, Evans P, Rittmann BE, Krajmalnik-Brown R (2014) Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactors. Environ Sci Technol 48:7511–7518

    Article  CAS  Google Scholar 

  • Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N, Inamori Y (2006) Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microb Ecol 52:253–266

    Article  CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Sinninghe Damste JS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  Google Scholar 

  • Rikken GB, Kroon AGM, van Ginkel CG (1996) Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl Microbiol Biotechnol 45:420–426

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  Google Scholar 

  • Sun FY, Dong WY, Shao MF, Lv XM, Li J, Peng LY, Wang HJ (2013) Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation. Bioresour Technol 146:2–9

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Tang Y, Zhao HP, Marcus A, Krajmalnik-Brown R, Rittmann BE (2012) A steady-state-biofilm model for simultaneous reduction of nitrate and perchlorate—part 2: parameter optimization and results and discussion. Environ Sci Technol 46:1608–1615

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (2001) Record of decision of the Western http://www.epa.gov/superfund/sites/rods/fulltext/r0901535.pdf

  • United States Environmental Protection Agency (2015) Basic information about nitrate in drinking water. http://water.epa.gov/drink/contaminants/basicinformation/nitrate.cfm

  • Water Resource Foundation (2015). Perchlorate in drinking water regulatory update and treatment options. http://www.waterrf.org/resources/stateofthesciencereports/perchlorate_stateofthescience.pdf

  • Wu ML, Ettwig KF, Jetten MSM, Strous M, Keltjens JT, van Niftrik LA (2011) New intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus Methylomirabilis oxyfera. Biochem Soc Trans 39:243–248

    Article  CAS  Google Scholar 

  • Wu ML, Wessels HJCT, Pol A, den Camp JMO, Jetten MSM, von Niftrik L, Keltjens JT (2015) Xoxf-Type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxygera”. Appl Environ Microb 81:1442–1451

  • Yao S, Ni J, Zhao S, Qiang C, Zhang H, Wang S (2013) COD and nitrogen removal in facilitated transfer membrane-aerated biofilm reactor (FT-MABR). J Membr Sci 389:257–264

    Google Scholar 

  • Zhao HP, Van Ginkel S, Tang Y, Kang DW, Rittmann BE, Krajmalnik-Brown R (2011) Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environ Sci Technol 45:10155–10162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors greatly thank the “National Key Technology R&D Program (2014ZX07101-012),” the “National Natural Science Foundation of China (Grant Nos. 21377109 and 21577123),” and the “National High Technology Research and Development Program of China (2013AA06A205)” for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Ping Zhao.

Additional information

Responsible editor: Gerald Thouand

Ran Chen and Yi-Hao Luo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Luo, YH., Chen, JX. et al. Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors. Environ Sci Pollut Res 23, 9540–9548 (2016). https://doi.org/10.1007/s11356-016-6146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6146-y

Keywords

Navigation