Skip to main content

Advertisement

Log in

Youngia erythrocarpa, a newly discovered cadmium hyperaccumulator plant

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The farmland weed Youngia erythrocarpa has been found to have the basic characteristics of a cadmium (Cd) hyperaccumulator. This study carried out preliminary and further Cd concentration gradient experiments and field experiment using Y. erythrocarpa to confirm this fact. The results showed that the biomass and resistance coefficient of Y. erythrocarpa decreased, but the root/shoot ratio and the Cd content in roots and shoots increased with the increase in soil Cd concentration. The Cd content in shoots of Y. erythrocarpa exceeded 100 mg/kg when the soil Cd concentration was 25 mg/kg in the two concentration gradient experiments, up to the maxima of 293.25 and 317.87 mg/kg at 100 mg/kg soil Cd. Both the bioconcentration factor of the shoots and the translocation factor exceeded 1 in all Cd treatments. In the field experiment, the total Cd extraction by shoots was 0.934–0.996 mg/m2 at soil Cd levels of 2.04–2.89 mg/kg. Therefore, Y. erythrocarpa is a Cd hyperaccumulator that could be used to remediate Cd-contaminated farmland soil efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adki, V. S., Jadhav, J. P., & Bapat, V. A. (2013). Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. Environmental Science and Pollution Research, 20, 1173–1180.

    Article  CAS  Google Scholar 

  • Bao, S. D. (2000). Soil agrochemical analysis. Beijing: China Agriculture Press [in Chinese].

    Google Scholar 

  • Brooks, R. R. (1998). Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. Oxford: CAB International.

    Google Scholar 

  • Brooks, R. R., Lee, J., Reeves, R. D., & Jaffre, T. (1977). Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration, 7, 49–57.

    Article  CAS  Google Scholar 

  • Chang, Q. (2013). “Cadmium rice” as a warning to mankind. China Food, 11, 56–56 [in Chinese with English summary].

    Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution, 133, 365–371.

    Article  CAS  Google Scholar 

  • Lin, L. J., Jin, Q., Liu, Y. J., Ning, B., Liao, M. A., & Luo, L. (2014). Screening of a new cadmium hyperaccumulator, Galinsoga parviflora, from winter farmland weeds using the artificially-high soil cadmium concentration method. Environmental Toxicology and Chemistry, 33(11), 2422–2428.

    Article  CAS  Google Scholar 

  • Lukačová Kuliková, Z., & Lux, A. (2010). Silicon influence on maize, Zea mays L., hybrids exposed to cadmium treatment. Bulletin of Environmental Contamination and Toxicology, 85(3), 243–250.

    Article  Google Scholar 

  • Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environmental and Experimental Botany, 68(1), 1–13.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Zhao, F. J., & Lombi, E. (2002). Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, 75, l–56.

    Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace-metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. International Journal of Biochemistry and Cell Biology, 41(8–9), 1665–1677.

    Article  CAS  Google Scholar 

  • Rastmanesh, F., Moore, F., & Keshavarzi, B. (2010). Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman Province, Iran. Bulletin of Environmental Contamination and Toxicology, 85(5), 515–519.

    Article  CAS  Google Scholar 

  • Reeves, R. D., & Baker, A. J. M. (2000). Metal accumulating plants. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plant to clean up the environment. New York: Wiley.

    Google Scholar 

  • Shi, Z. (1997). Compositae. In X. X. Hu, C. S. Qian, & H. Y. Chen (Eds.), Flora republicae popularis sinicae 80(1) (pp. 158–159). Beijing: Science Press of China [in Chinese].

    Google Scholar 

  • Šottníková, A., Lunáčková, L., Masarovičová, E., Lux, A., & Streško, V. (2003). Changes in the rooting and growth of willows and poplars induced by cadmium. Biologia Plantarum, 46, 129–131.

    Article  Google Scholar 

  • Wang, Y. M. (2005). Soil heavy metal pollution and control. Anhui Agricultural Science Bulletin, 1(7), 46–47 [in Chinese with English summary].

    Google Scholar 

  • Wei, S. H., Zhou, Q. X., & Liu, R. (2005a). Utilization of weed resource in the remediation of soils contaminated by heavy metals. Journal of Natural Resources, 20(3), 432–440 [in Chinese with English summary].

    Google Scholar 

  • Wei, S. H., Zhou, Q. X., Wang, X., Zhang, K. S., Guo, G. L., & Ma Lena, Q. Y. (2005b). A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chinese Science Bulletin, 50(1), 33–38.

    Article  CAS  Google Scholar 

  • Wei, S., Clark, G., Doronila, A. I., Jin, J., & Monsant, A. C. (2013). Cd hyperaccumulative characteristics of Australia ecotype Solanum Nigrum L. and its implication in screening hyperaccumulator. International Journal of Phytoremediation, 15, 199–205.

    Article  CAS  Google Scholar 

  • Wu, L. H., Li, H., Luo, Y. M., & Christie, P. (2004). Nutrients can enhance phytoremediation by Indian mustard. Environmental Geochemistry and Health, 26, 31–335.

    Google Scholar 

  • Xia, X. H., & Chen, J. S. (1997). Advances in the study of remediation methods of heavy metal-contaminated soil. Environmental Science, 18(3), 73–77 [in Chinese with English summary].

    Google Scholar 

  • Yang, K. B. (2007). Chinese farmland soil heavy metal pollution and its phytoremediation. World Agriculture, 340(8), 58–61 [in Chinese with English summary].

    Google Scholar 

  • Zhang, X. F., Xia, H. P., Li, Z. A., Zhuang, P., & Gao, B. (2010a). Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresource Technology, 101, 2063–2066.

    Article  CAS  Google Scholar 

  • Zhang, X. M., Yang, Q. W., & Li, Y. (2010b). Progress of status and remediation of soil cadmium pollution. Journal of Hebei Agricultural Science, 14(3), 79–81 [in Chinese with English summary].

    Google Scholar 

  • Zhang, X. F., Xia, H. P., Li, Z. A., Zhuang, P., & Gao, B. (2011). Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. Journal of Hazardous Materials, 189, 414–419.

    Article  CAS  Google Scholar 

  • Zhang, S. R., Lin, H. C., Deng, L. J., Gong, G. S., Jia, Y. X., Xu, X. X., Li, T., Li, Y., & Chen, H. (2013). Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. Ecological Engineering, 51, 133–139.

    Article  Google Scholar 

  • Zhao, L. X. (2004). Study on the bioaccumulation character of weeds for heavy metals in polluted soil. Environmental Protection Science, 30(5), 43–45 [in Chinese with English summary].

    Google Scholar 

  • Zhao, Q. L., & Lu, W. R. (2010). Research review and prospect of soil heavy metals pollution: bibliometric analysis based on web of science. Environmental Science and Technology, 33(6), 105–111 [in Chinese with English summary].

    Google Scholar 

  • Zhao, Y. D., Pan, Y. Z., Liu, B. Y., Yang, H., Hou, Y., Zhang, J. F., & Cai, L. (2012). Pilea cadierei Gagnep. et Guill’s growth and accumulation under single and combined pollution of Cd and Pb. Journal of Agro-Environment Science, 31(1), 48–53 [in Chinese with English summary].

    Google Scholar 

  • Zhou, W. B., & Qiu, B. S. (2005). Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Science, 169, 737–745.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L. Lin and B. Ning contributed equally to this work. The authors thank Jinyang Li, Jinlong Huang, Huanjie Lan, Huan Liang, and Qiang Liu at the College of Resource and Environment, Sichuan Agricultural University, for helping with cadmium measurements in plant tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming’an Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Ning, B., Liao, M. et al. Youngia erythrocarpa, a newly discovered cadmium hyperaccumulator plant. Environ Monit Assess 187, 4205 (2015). https://doi.org/10.1007/s10661-014-4205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4205-8

Keywords

Navigation