Skip to main content

Advertisement

Log in

Continuous efficient removal and inactivation mechanism of E. coli by bismuth-doped SnO2/C electrocatalytic membrane

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Bi-SnO2/C electrocatalytic membrane was fabricated via a simple electrochemical reduction and hydrothermal method. Under the action of electric field, the Sn2+ and Bi3+ were firstly adsorbed and reduced to metallic Sn and Bi on the carbon membrane surface by cathodic reduction reaction, and the Bi-SnO2/C membrane was obtained subsequently through hydrothermal oxidation process. Confirmed by SEM, TEM, XRD, and XPS characterizations, the nano-Bi-SnO2 is homogeneously distributed on the membrane surface and is firmly attached to the carbon membrane via C–O–Sn chemical bond. Through CV, LSV, and EIS electrochemical analysis, the Bi-SnO2/C membrane possesses the higher electrocatalytic activity and stability than carbon membrane. Therefore, the Bi-SnO2/C membrane could continuously efficiently remove and inactivate Escherichia coli in water through flow-through mode. As a result, the sterilization efficiency can reach more than 99.99% under the conditions of cell voltage 4 V, flow rate 1.4 mL/min, and E. coli initial concentration 1.0 × 104 CFU/mL, owing to the synergistic effect of the membrane separation and electrocatalytic oxidation. Moreover, it was found that the oxidation groups of ⋅OH radicals generated by Bi-SnO2/C membrane play the crucial role for bactericidal performance. This work presents a low-cost, highly active, and stable electrocatalytic membrane towards continuous bacterial inactivation, which exhibits promising potential in water disinfection and is beneficial for practical large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahn YY, Yang SY, Choi C, Choi W, Kim S, Park H (2017) Electrocatalytic activities of Sb-SnO2 and Bi-TiO2 anodes for water treatment: effects of electrocatalyst composition and electrolyte. Catal Today 282:57–64

    Article  CAS  Google Scholar 

  • Cheng H, Huang B, Lu J, Wang Z, Xu B, Qin X, Zhang X, Dai Y (2010) Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs. Phys Chem Chem Phys 12(47):15468–15475

    Article  CAS  Google Scholar 

  • Choi J, Qu Y, Hoffmann MR (2012) SnO2, IrO2, Ta2O5, Bi2O3, and TiO2, nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2. J Nanopart Res 14(8):1–12

    Article  CAS  Google Scholar 

  • Dress KP, Abbaszadegan M, Maier RM (2003) Comparative electrochemical inactivation of bacteria and bacteriophage. Water Res 37(10):2291–2300

    Article  CAS  Google Scholar 

  • Elimelech M (2006) The global challenge for adequate and safe water. J Water Supply Res Technol 55(1):3–10

    Article  Google Scholar 

  • Fang Q, Shang C, Chen G (2016) MS2 inactivation by chloride-assisted electrochemical disinfection. J Environ Eng 132(1):13–22

    Article  CAS  Google Scholar 

  • Guo J, Liu Y, Hao Y, Li Y, Wang X, Liu R, Li F (2018) Comparison of importance between separation efficiency and valence band position: the case of heterostructured Bi3O4Br/α-Bi2O3 photocatalysts. Applied Catalysis B-Environmental 224:841–853

    Article  CAS  Google Scholar 

  • Jiang Y, Li M, Guo C, An D, Xu J, Zhang Y, Xi B (2014) Distribution and ecological risk of antibiotics in a typical effluent-receiving river (Wang Yang River) in North China. Chemosphere 122:267–274

    Article  CAS  Google Scholar 

  • Hsu CH, Jeng WL, Chang RM, Chien LC, Han BC (2001) Estimation of potential lifetime cancer risks for trihalomethanes from consuming chlorinated drinking water in Taiwan. Environ Res 85(2):77–82

    Article  CAS  Google Scholar 

  • Jeong J, Kim JY, Yoon J (2006) The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environ Sci Technol 40(19):6117–6122

    Article  CAS  Google Scholar 

  • Kim J, Choi WJK, Choi J, Hoffmann MR, Park H (2013) Electrolysis of urea and urine for solar hydrogen. Catal Today 199(199):2–7

    Article  CAS  Google Scholar 

  • Kim YK, Park H (2011) Light-harvesting multi-walled carbon nanotubes and CdS hybrids: application to photocatalytic hydrogen production from water. Energy Environ Sci 4(3):685–694

    Article  CAS  Google Scholar 

  • Li C, Song C, Tao P, Sun M, Pan Z, Wang T, Shao M (2016b) Enhanced separation performance of coal-based carbon membranes coupled with an electric field for oily wastewater treatment. Sep Purif Technol 168:47–56

    Article  CAS  Google Scholar 

  • Li M, Qiang Z, Pulgarin C, Kiwi J (2016a) Accelerated methylene blue (MB) degradation by Fenton reagent exposed to UV or VUV/UV light in an innovative micro photo-reactor. Appl Catal B-Environ 187:83–89

    Article  CAS  Google Scholar 

  • Liang W, Qu J, Chen L, Liu H, Lei P (2005) Inactivation of microcystis aeruginosa by continuous electrochemical cycling process in tube using Ti/RuO2 electrodes. Environ Sci Technol 39(12):4633–4639

    Article  CAS  Google Scholar 

  • Lin T, Wu S, Chen W (2014) Formation potentials of bromate and brominated disinfection by-products in bromide-containing water by ozonation. Environ Sci Pollut Res 21(24):13987–14003

    Article  CAS  Google Scholar 

  • Liu H, Vajpayee A, Vecitis CD (2013) Bismuth-doped tin oxide-coated carbon nanotube network: improved anode stability and efficiency for flow-through organic electrooxidation. ACS Appl Mater Interfaces 5(20):10054–10066

    Article  CAS  Google Scholar 

  • Liu Z, Zhu M, Wang Z, Wang H, Deng C, Li K (2016a) Effective degradation of aqueous tetracycline using a nano-TiO2/carbon electrocatalytic membrane. Materials 9(15):364–377

    Article  CAS  Google Scholar 

  • Liu Z, Zhu M, Zhao L, Deng C, Ma J, Wang Z, Liu H, Wang H (2016b) Aqueous tetracycline degradation by coal-based carbon electrocatalytic filtration membrane: effect of nano antimony-doped tin dioxide coating. Chem Eng J 314:59–68

    Article  CAS  Google Scholar 

  • Malato, S., Oller, I., Fernandez-Ibanez, P., Fuerhacker, M., 2010. Technologies for advanced wastewater treatment in the Mediterranean region. Waste Water Treatment and Reuse in the Mediterranean Region. Springer Berlin Heidelberg 19 (1), 1–3

  • Matsunaga T, Nakasono S, Takamuku T, Burgess JG, Nakamura N, Sode K (1992) Disinfection of drinking water by using a novel electrochemical reactor employing carbon-cloth electrodes. Appl Environ Microbiol 58(2):686–689

    CAS  Google Scholar 

  • Montgomery MA, Elimelech M (2007) Water and sanitation in developing countries: including health in the equation. Environ Sci Technol 41(1):17–24

    Article  Google Scholar 

  • Nevel SV, Koetzsch S, Proctor CR, Besmer MD, Prest EI, Vrouwenvelder JS, Knezev A, Boon N, Hammes F (2017) Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Res 113(17):191–206

    Article  CAS  Google Scholar 

  • Oturan N, Wu JZ, Zhang H, Sharma VK, Oturan MA (2013) Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials. Appl Catal B-Environ 140-141(2):92–97

    Article  CAS  Google Scholar 

  • Park H, Bak A, Ahn YY, Choi J, Hoffmannn MR (2012) Photoelectrochemical performance of multi-layered BiOx-TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water. J Hazard Mater 211:47–54

    Article  CAS  Google Scholar 

  • Song C, Wang T, Pan Y, Qiu J (2016) Preparation of coal-based microfiltration carbon membrane and application in oily wastewater treatment. Sep Purif Technol 51(1):80–84

    Article  CAS  Google Scholar 

  • Song C, Wang T, Qiu J, Cao Y, Cai T (2008) Effects of carbonization conditions on the properties of coal-based microfiltration carbon membranes. J Porous Mater 15(1):1–6

    Article  CAS  Google Scholar 

  • Sun M, Feng G, Zhang M, Song C, Tao P, Wang T, Shao M (2018) Enhanced removal ability of phenol from aqueous solution using coal-based carbon membrane coupled with electrochemical oxidation process. Colloids Surf A Physicochem Eng Asp 540:186–193

    Article  CAS  Google Scholar 

  • Sun Y, Chemelewski WD, Berglund SP, Li C, He H, Shi G, Mullins CB (2014) Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite. ACS Appl Mater Interfaces 6(8):5494–5499

    Article  CAS  Google Scholar 

  • Tsydenova O, Batoev V, Batoeva A (2015) Solar-enhanced advanced oxidation processes for water treatment: simultaneous removal of pathogens and chemical pollutants. Int J Environ Res Public Health 12(8):9542–9561

    Article  CAS  Google Scholar 

  • Vecitis CD, Schnoor MH, Rahaman MS, Schiffman JD, Elimelech M (2011) Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ Sci Technol 45(8):3672–3679

    Article  CAS  Google Scholar 

  • Von GU (2003) Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37(7):1469–1487

    Article  CAS  Google Scholar 

  • Wang C, Meng F, Wang T, Ma T, Qiu J (2014) Monolithic coal-based carbon counter electrodes for highly efficient dye-sensitized solar cells. Carbon 67(2):465–474

    Article  CAS  Google Scholar 

  • Wang W, Li G, Xia D, An T, Zhao H, Wong PK (2017) Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environ Sci: Nano 4(4):782–799

    CAS  Google Scholar 

  • Xiong XH, Yong-you HU, Hong XS, Yang Y (2014) Study on bactericidal capability of silver nanoparticles to Escherichia coli in water. Acta Biomater 4(3):707–716

    Google Scholar 

  • Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Article  CAS  Google Scholar 

  • Yang X, Fu H, Wang X, Yang J, Jiang X (2014) Synthesis of silver-titanium dioxide nanocomposites for antimicrobial applications. J Nanopart Res 16(8):1–13

    Google Scholar 

  • Yang SY, Choo YS, Kim S, Lim SK, Lee J, Park H (2012) Boosting the electrocatalytic activities of SnO2 electrodes for remediation of aqueous pollutants by doping with various metals. Appl Catal B-Environ 111(6):317–325

    Article  CAS  Google Scholar 

  • Yang SY, Vecitis CD, Park H (2019) Electrocatalytic water treatment using carbon nanotube filters modified with metal oxides. Environ Sci Pollut Res 26(2):1036–1043

    Article  CAS  Google Scholar 

  • Yang Y, Li J, Wang H, Song X, Wang T, He Q, Liang X (2011) An electrocatalytic membrane reactor with self-cleaning function for industrial wastewater treatment. Angew Chem 123(9):2196–2198

    Article  Google Scholar 

  • Zha XS, Liu Y, Liu X, Zhang Q, Dai RH, Ying LW, Wu J, Wang JT, Ma L (2014) Effects of bromide and iodide ions on the formation of disinfection by-products during ozonation and subsequent chlorination of water containing biological source matters. Environ Sci Pollut Res 21(4):2714–2723

    Article  CAS  Google Scholar 

  • Zhao L, Wang QC, Zhang XQ, Deng C, Li ZH, Lei YP, Zhu MF (2018) Combined electron and structure manipulation on Fe-containing N doped carbon nanotubes to boost bifunctional oxygen electrocatalysis. ACS Appl Mater Interfaces 10(42):35888–35895

    Article  CAS  Google Scholar 

  • Zhu J, Lu Z, Aruna ST, Aurbach D, Gedanken A (2000) Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes. Chem Mater 12(9):2557–2566

    Article  CAS  Google Scholar 

  • Zhuo Q, Deng S, Yang B, Huang J, Yu G (2011) Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode. Environ Sci Technol 45(7):2973–2979

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51878659) and Youth Development Program of Military Medical Technology (No. 19QNP111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Deng or Mengfu Zhu.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Deng, Y., Hao, L. et al. Continuous efficient removal and inactivation mechanism of E. coli by bismuth-doped SnO2/C electrocatalytic membrane. Environ Sci Pollut Res 26, 11399–11409 (2019). https://doi.org/10.1007/s11356-019-04576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04576-6

Keywords

Navigation