Skip to main content
Log in

Modelling as decision support for the localisation of submarine urban wastewater outfall: Venice lagoon (Italy) as a case study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microbiological impact is critical in coastal areas where tourism is particularly important for both the local and regional economy. Submarine outfalls are commonly used to enhance the dispersion of treated sewage thus avoiding pollution along the coast. The Venice lagoon (North Italy) has a very sensitive ecosystem, due to the morphological and natural characteristics of the basin and the co-existence of human activities. To preserve the lagoon, the discharge from the treatment plant for urban wastewater collected from the Venezia-Mestre agglomeration, neighbouring areas and local industries (total of 400,000 population equivalent—PE) has been moved from the lagoon to the open Adriatic Sea since November 2013 by means of an approximately 20-km pipeline. Microbiological pollution inside the lagoon can affect shellfish breeding areas instead, along the coast it affects the quality of bathing waters. In this study, and for the first time, a 3D hydrodynamic SHYFEM model (shallow water finite element model) with high spatial resolution coupled with a microbiological module has been applied to the lagoon and to the Adriatic Sea, to evaluate the effectiveness of the location of the submarine outfall. Microbiological data have been produced by the control Authority according to official analytic methods and by the plant operator. The module of survival of free Escherichia coli follows a variable rate in dependence of UV radiation, temperature and salinity in the water. Two scenarios were modelled: final discharge into the lagoon before November 2013 and after into the open sea. In the latter case, two situations have been considered, one with “Bora” and the other with “Scirocco” winds. Our results indicate that the model correctly simulates microbiological decay and dispersion. The transferral of the final discharge point far from the shoreline improves pollution dispersion, thus preserving the lagoon without evidence of impacts on the bathing waters in all meteorological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • APAT-Italian National Environmental Protection Agency (2003) Analytical methods for water, 3, 29/2003, Rome. http://www.apat.gov.it/site/it-IT/APAT/Pubblicazioni/Manuali_e_linee_guida/ September 2016

  • Bellafiore D, Umgiesser G (2010) Hydrodynamic coastal processes in the North Adriatic investigated with a 3D finite element model. Ocean Dyn 60:255–273. https://doi.org/10.1007/s10236-009-0254-x

    Article  Google Scholar 

  • Bellucci LG, Frignani M, Paolucci D, Ravanelli M (2002) Distribution of heavy metals in sediments of the Venice Lagoon: the role of the industrial area. Sci Total Environ 295:35–49. https://doi.org/10.1016/S0048-9697(02)00040-2

    Article  CAS  Google Scholar 

  • Bonamano S, Madonia A, Borsellino C, Stefani C, Caruso G, De Pasquale F, Piermattei V, Zappalà G, Marcelli M (2015) Modeling the dispersion of viable and total Escherichia coli cells in the artificial semi-enclosed bathing area of Santa Marinella (Latium, Italy). Mar Pollut Bull 95:141–154. https://doi.org/10.1016/j.marpolbul.2015.04.030

    Article  CAS  Google Scholar 

  • Cabelli VJ, Dufour AP, McCabe LJ, Levin MA (1982) Swimming-associated gastroenteritis and water quality. Am J Epidemiol 115:606–616

    Article  CAS  Google Scholar 

  • Caliceti M, Argese E, Sfriso A, Pavoni B (2002) Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47:443–454

    Article  CAS  Google Scholar 

  • Chapra SC (1997) Surface water quality modeling. McGraw-Hill, Boston

    Google Scholar 

  • Cucco A, Umgiesser G (2006) Modeling the Venice lagoon residence time. Ecol Model 193(1–2):34–51

    Article  Google Scholar 

  • Darakas E, Koumoulidou T, Lazaridou D (2009) Fecal indicator bacteria declines via a dilution of wastewater in seawater. Desalination 248:1008–1015

    Article  CAS  Google Scholar 

  • De Marchis M, Freni G, Napoli E (2013) Modelling E. coli distribution in coastal areas subjected to combined sewer overflow. Water Sci Technol 68(5):1123–1136. https://doi.org/10.2166/wst.2013.353

    Article  CAS  Google Scholar 

  • EEA-European Environmental Agency (1998) Europe’s environment. The Second Assessment, Copenhagen

    Google Scholar 

  • EU Directive 91/271/EEC (1991) Urban waste water treatment, EU OJ n. L 135, 30/05/1991

  • EU Directive 92/43/EEC (1992) Wild natural habitat conservation, EU OJ n. L 206, 22/07/1992

  • EU-Directive 2000/60/CE (2000) Water framework directive, EU OJ n. L 327, 22/12/2000

  • EU-Directive 2006/113/EC (2006) Shellfish waters’ quality. EU OJ n. L 376/14 EN, 27/12/2006

  • EU-Directive 2006/7/EC (2006) Management of bathing water quality and repealing Directive 76/160/EEC. EU OJ n. L 64, 4/03/2006

  • EU-Directive 2008/56/EC 17/07/2008 (2008) Marine strategy framework directive. EU OJ n. L 164, 25/06/2008

  • Ferrarin C, Ghezzo M, Umgiesser G, Tagliapietra D, Camatti E, Zaggia L, Sarretta A (2013) Assessing hydrological effects of human interventions on coastal systems: numerical applications to the Venice lagoon. Hydrol Earth Syst Sci 17:1733–1748. https://doi.org/10.5194/hess-17-1733-2013

    Article  Google Scholar 

  • Fiandrino A, Martin Y, Got P, Bonnefont JL, Troussellier M (2003) Bacterial contamination of Mediterranean coastal seawater as affected by riverine inputs: simulation approach applied to shellfish breeding area (Thau lagoon). Water Res 37:1711–1722. https://doi.org/10.1016/S0043-1354(02)00573-0

    Article  CAS  Google Scholar 

  • Gameson ALH, Gould DJ (1974) Effect of solar radiation on the mortality of some terrestrial bacteria in sea water. Proceeding of the International symposium on the discharge of sewage from sea outfalls. Pergamon Press, New York, pp 209–219

    Chapter  Google Scholar 

  • Geldreich E (1975) Microbiological criteria concepts for coastal bathing waters. Ocean Man 2(3):225–248. https://doi.org/10.1016/0302-184X(75)90003-7

    Article  Google Scholar 

  • Ghezzo M, Guerzoni S, Cucco A, Umgiesser G (2010) Changes in Venice lagoon dynamics due to construction of mobile barriers. Coast Eng 57:694–708. https://doi.org/10.1016/j.coastaleng.2010.02.009

    Article  Google Scholar 

  • Ghezzo M, Sarretta A, Sigovini M, Guerzoni S, Tagliapietra D, Umgiesser G (2011) Modeling the inter-annual variability of salinity in the lagoon of Venice in relation to the water framework directive typologies. Ocean Coast Manag 54:706–719. https://doi.org/10.1016/j.ocecoaman.2011.06.007

    Article  Google Scholar 

  • Ghezzo M, De Pascalis F, Umgiesser G, Zemlys P, Sigovini M, Marcos C, Perez Ruzafa A (2015) Connectivity in three European lagoons. Estuar Coasts 38:1764–1781. https://doi.org/10.1007/s12237-014-9908-0

    Article  CAS  Google Scholar 

  • Grimes DJ, Singleton FL, Stemmler J, Palmer LM, Brayton P, Colwell PP (1984) Microbiological effects of wastewater effluent discharge into coastal waters of Puerto Rico. Water Res 18(5):613–619. https://doi.org/10.1016/0043-1354(84)90212-4

    Article  CAS  Google Scholar 

  • Hernández-Terrones L, Null KA, Ortega-Camacho D (2015) Water quality assessment in the Mexican Caribbean: impacts on the coastal ecosystem. Cont Shelf Res 102:62–72. https://doi.org/10.1016/j.csr.2015.04.015

    Article  Google Scholar 

  • Huang G, Falconer RA, Lin B (2017) Integrated hydro-bacterial modelling for predicting bathing water quality. Estuar Coast Shelf Sci 188:145–155. https://doi.org/10.1016/j.ecss.2017.01.018

    Article  Google Scholar 

  • Jeng HAC, Englande AJ, Bakeer RM, Bradford HB (2005) Impact of urban stormwater runoff on estuarine environmental quality. Estuarine Coastal and Shelf Management 63:513–526. https://doi.org/10.1016/j.ecss.2004.11.024

    Article  Google Scholar 

  • Oliver DM, Porter KDH, Pachepsky YA, Muirhead RW, Reaney SM, Coffey R, Kay D, Milledge DG, Hong E, Anthony SG, Page T, Bloodworth JW, Mellander PE, Carbonneau PE, McGrane SJ, Quilliam RS (2016) Predicting microbial water quality with models: over-arching questions for managing risk in agricultural catchments. Sci Total Environ 544:39–47. https://doi.org/10.1016/j.scitotenv.2015.11.086

    Article  CAS  Google Scholar 

  • Ostoich M, Aimo E, Fassina D, Barbaro J, Vazzoler M, Soccorso C, Rossi C (2011) Biologic impact on the coastal belt of the province of Venice (Italy-Northern Adriatic Sea): preliminary analysis for the characterization of the bathing water profile. Environ Sci Pollut Res 18(2):247–259. https://doi.org/10.1007/s11356-010-0368-1

    Article  CAS  Google Scholar 

  • Rees G (1993) Health implications of sewage in coastal waters – the British case. Mar Pollut Bull 26(1):14–19

    Article  Google Scholar 

  • Riou P, Le Saux JC, Dumas F, Caprais MP, Le Guyader LF, Pommepuy MP (2007) Microbial impact of small tributaries on water and shellfish quality in shallow coastal areas. Water Res 41:2774–2786. https://doi.org/10.1016/j.watres.2007.03.003

    Article  CAS  Google Scholar 

  • Sampaio L, Rodriguez AM, Quintino V (2011) Can biotic indices detect mild organic enrichment of the seafloor? Ecol Indic 11:1235–1244. https://doi.org/10.1016/j.ecolind.2011.01.001

    Article  CAS  Google Scholar 

  • Schernewski G, Schippmann B, Walczykiewicz T (2014) Coastal bathing water quality and climate change - a new information and simulation system for new challenges. Ocean Coast Manag 101:53–60. https://doi.org/10.1016/j.ocecoaman.2014.01.004

    Article  Google Scholar 

  • Scoullos MJ, Sakellari A, Giannopoulou K, Paraskevopoulou V, Dassenakis M (2007) Dissolved and particulate trace metal levels in the Saronikos Gulf, Greece, in 2004. The impact of the primary Wastewater Treatment Plant of Psittalia. Desalination 210:98–109. https://doi.org/10.1016/j.desal.2006.05.036

    Article  CAS  Google Scholar 

  • Scroccaro I, Ostoich M, Umgiesser G, De Pascalis F, Colugnati L, Mattassi G, Vazzoler M, Cuomo M (2010) Submarine wastewater discharges: dispersion modeling in the Northern Adriatic Sea. Environ Sci Pollut Res 17(4):844–855. https://doi.org/10.1007/s11356-009-0273-7

    Article  CAS  Google Scholar 

  • Thomann RV, Mueller JA (1987) Principles of surface water quality modeling and control. Harper Collins, New York 644 pp

    Google Scholar 

  • Umgiesser G (2000) Modeling residual currents in the Venice lagoon. In: T Yanagi (Ed) Interactions between Estuaries, Coastal Seas and Shelf Seas Tokio: Terra Scientific Publishing Company (TERRAPUB), JP:107–124

  • Umgiesser G, Melaku Canu D, Cucco A, Solidoro C (2004) A finite element model for the Venice lagoon. Development, set up, calibration and validation. J Mar Syst 51:123–145

    Article  Google Scholar 

  • Umgiesser G, Mattassi G, Scroccaro I, Ostoich M, Vazzoler M (2008) The use of numerical modeling in Italian watershed management. In: IE Gönenç et al. (eds) Sustainable Use and Development of Watersheds.© Springer Science + Business Media B.V, pp 243–261

  • Umgiesser G, Ferrarin C, Cucco A, De Pascalis F, Bellafiore D, Ghezzo M, Bajo M (2014) Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modelling. J Geophys Res Oceans 119(4):2212–2226. https://doi.org/10.1002/2013JC009512

    Article  Google Scholar 

  • Veneto Region (2009) Water protection plan. Approved with deliberation n. 107 of 5/11/2009. Veneto Region OJ n. 100

  • Violinitzis C, Arditsoglou A, Vouts D (2009) Elemental composition of suspended particulate matter and sediments in the coastal environment of Thermaikos Bay, Greece: delineating the impact of inland waters and wastewaters. J Hazard Mater 16:1250–1260. https://doi.org/10.1016/j.jhazmat.2008.12.046

    Article  CAS  Google Scholar 

  • Wade TJ, Sams E, Brenner KP, Haugland R, Chern E, Beach M, Wymer L, Rankin CC, Love D, Li Q, Noble R, Dufour AP (2010) Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: a prospective cohort study. Environ Health 9:66. https://doi.org/10.1186/1476-069X-9-66

    Article  CAS  Google Scholar 

  • Wang JD, Solo-Gabriele HM, Abdelzaher AM, Fleming LE (2010) Estimation of Enterococci input from bathers and animals on a recreational beach using camera images. Mar Pollut Bull 60:1270–1278. https://doi.org/10.1016/j.marpolbul.2010.03.016

    Article  CAS  Google Scholar 

  • WHO (2003) Guidelines for safe recreational water environments coastal and fresh waters - volume 1. World Health Organization, Geneva

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Veritas SpA for the supply of data on the Fusina plant, CNR-ISMAR for SHYFEM model application, the personnel of the ARPAV laboratory service of Venice and personnel of SIFA Scpa responsible of the tertiary section of wastewater treatment plant of Fusina for data supply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ostoich.

Additional information

Responsible editor: Marcus Schulz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostoich, M., Ghezzo, M., Umgiesser, G. et al. Modelling as decision support for the localisation of submarine urban wastewater outfall: Venice lagoon (Italy) as a case study. Environ Sci Pollut Res 25, 34306–34318 (2018). https://doi.org/10.1007/s11356-018-3316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3316-0

Keywords

Navigation