Skip to main content
Log in

Concentrations and health risks of heavy metals in soils and crops around the Pingle manganese (Mn) mine area in Guangxi Province, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Heavy metal concentrations in agricultural fields and their ecological risks are a source of extensive concern worldwide. A field survey was conducted to investigate the present situation and health risks of heavy metals (Mn, Pb, Zn, Cu, and Cd) and crops (corn, green soybean, sweet potato, persimmon, cassava, and Chinese chestnut) around the Pingle manganese (Mn) mine site in Guangxi Province, China, which was abandoned 20 years ago. The results showed that the ranges of Mn, Pb, Zn, Cu, and Cd were 2706.54–6760.16, 229.37–275.84, 160.39–215.48, 58.11–75.30, and 5.78–6.98 mg kg−1, respectively, which were approximately 15.38–38.41, 11.76–14.15, 2.12–2.85, 2.09–2.71, and 21.64–28.75 times greater than their respective background values. Most of these concentrations exceeded the national standard for soil quality (grade 2) developed by the Ministry of Environmental Protection of China (1995). Contamination assessments based on the single contamination index (Pi), Nemerow multi-factor index (Pcom), and potential ecological risk index (RI) showed that the sampled soils were severely polluted with these heavy metals, especially Pb and Cd. Similarly, the crops were enriched with Pb and Cd, with concentrations of 10.22–41.78 and 2.33–5.37 mg kg−1, respectively, which were much higher than the threshold values of the national food standards. Contamination assessments with Pi and Pcom also showed that the crops were severely polluted with Pb and Cd. The bioaccumulation factor values for Cd were highest among the heavy metals, with an average mean of 0.66 in these six crops, demonstrating that Cd readily accumulates in these crops. An assessment showed that the health risk for adults living in the mining-impacted areas was significant. Our study strongly recommends that heavy metal contamination in agricultural soils and crops grown around the Pingle Mn mining-affected areas should be treated to mitigate the health risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ávila PF, Silva EFD, Candeias C (2016) Health risk assessment through consumption of vegetables rich in heavy metals: the case study of the surrounding villages from Panasqueira mine, Central Portugal. Environ Geochem Health 39(3):1–25

    Google Scholar 

  • Bi CJ, Zhou Y, Chen ZL, Jia JP, Bao XY (2018) Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Sci Total Environ 619-620:1349–1357

    Article  CAS  Google Scholar 

  • Bian B, Wu HS, Zhou LJ (2015) Contamination and risk assessment of heavy metals in soils irrigated with biogas slurry: a case study of Taihu basin. Environ Monit Assess 187(4):155

    Article  CAS  Google Scholar 

  • Brady J, Ayoko G, Martens W, Goonetilleke A (2015) Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environ Monit Assess 187(5):1–14

    Article  Google Scholar 

  • Cai LQ, Yeboah S, Sun CS, Cai XD, Zhang RZ (2015) GIS-based assessment of arable layer pollution of copper (Cu), zinc (Zn) and lead (Pb) in Baiyin District of Gansu Province. Environ Earth Sci 74(1):803–811

    Article  CAS  Google Scholar 

  • Cao SZ, Duan XL, Zhao XG, Wang BB, Ma J, Fan DL, Sun CY, He B, Wei FS, Jiang GB (2014) Isotopic ratio based source apportionment of children’s blood lead around coking plant area. Environ Int 73(1):158–166

    Article  CAS  Google Scholar 

  • Chaparro LT, Guney M, Zagury GJ (2018) In vitro dermal bioaccessibility of selected metals in contaminated soil and mine tailings and human health risk characterization. Chemosphere 197:42–49

    Article  CAS  Google Scholar 

  • Cheng XL, Tang ZZ, Han YB, Huang ZY, Huang L, Yang J (2005) The public nutrition academic seminar of Chinese nutrition society, i.e. the conference of Chinese residents dietary and nutrition status change, Daliang, 111-118 (in Chinese)

  • Cheng AZ, Wei HH, Tan F (2010) Analysis of the temporal-spatial distribution and seasonal variation of the acid rain in Guangxi Province. Meteor Environ Res (English version) 1(1):62–65

    Google Scholar 

  • China’s Environmental Protection Agency (1990) Background value of China soil element. China Environmental Science Press, Beijing (in Chinese)

    Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Coelho C, Foret C, Bazin C, Leduc L, Hammada M, Inácio M, Bedell JP (2018) Bioavailability and bioaccumulation of heavy metals of several soils and sediments (from industrialized urban areas) for Eisenia fetida. Sci Total Environ 635:1317–1330

    Article  CAS  Google Scholar 

  • Deng Z, Lin Y, Zhang M, Liu G, Wei Z (1988) Karst and geological structure in Guilin, vol 129. Chongqing Publishing House, Chongqing (in Chinese)

    Google Scholar 

  • Deng H, Yu FM, Hu LL, Huang FL, Liang J, Zhou ZM (2013) Pollution and Risk Evaluation of Heavy Metals in Rice of Guilin. Proceedings of the Fifth National Symposium on agro environmental sciences 64–68 (in Chinese)

  • Fan Y, Li Y, Li H, Cheng F (2018) Evaluating heavy metal accumulation and potential risks in soil-plant systems applied with magnesium slag-based fertilizer. Chemosphere 197:382–388

    Article  CAS  Google Scholar 

  • Ghosha K, Indra N (2018) Cadmium treatment induces echinocytosis, DNA damage, inflammation, and apoptosis in cardiac tissue of albino Wistar rats. Environ Toxicol Pharmacol 59:43–52

    Article  CAS  Google Scholar 

  • Gutiérrez F, Parise M, Waele JD, Jourde H (2014) A review on natural and human-induced geohazards and impacts in karst. Earth Sci Rev 138:61–88

    Article  Google Scholar 

  • Hakanson L (1980) Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Huang FF, Li Y, Guo XL (2011) Ecological restoration model of open-pit waste land in Pingle manganese mine, Guangxi. Ming Res Dev 31(1):88–91 (in Chinese)

    CAS  Google Scholar 

  • Jiang YH, Li N (2013) Assessment of heavy metal contamination in soil around some mining area in Liuzhou. Agr Res App 3:31–34 (in Chinese)

    Google Scholar 

  • Khan S, Rehman S, Khan AZ, Khan MA, Shah MT (2010) Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicol Environ Saf 73:1820–1827

    Article  CAS  Google Scholar 

  • Khan K, Lu Y, Khan H, Ishtiaq M, Khan S, Waqas M, Wei L, Wang T (2013) Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem Toxicol 58:449–458

    Article  CAS  Google Scholar 

  • Khan A, Khan S, Khan MA, Qamar Z, Waqas M (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res 22:13772–13799

    Article  CAS  Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137(1):19–32

    Article  CAS  Google Scholar 

  • Lai YP, Tang WJ, Deng H, Li MS, Yu FM, Li Y (2007) Fuzzy synthetic assessment of heavy metal contamination in crop-reclaimed Mn mine lands. J GXNU: Natl Sci Ed 8(8):1801–1806 (in Chinese)

    Google Scholar 

  • Lee JS, Lee SW, Chon HT, Kim KW (2008) Evaluation of human exposure to arsenic due to rice ingestion in the vicinity of abandoned Myungbong Au–Ag mine site, Korea. J Geochem Explor 96(2–3):231–235

    Article  CAS  Google Scholar 

  • Lei M, Tie BQ, Song ZG, Liao BH, Lepo JE, Huang YZ (2015) Heavy metal pollution and potential health risk assessment of white rice around mine areas in Hunan Province, China. Food Sec 7(1):45–54

    Article  Google Scholar 

  • Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357:38–53

    Article  CAS  Google Scholar 

  • Liang F, Xu B (2014) Discrimination of tower-, cockpit-, and non-karst landforms in Guilin, Southern China, based on morphometric characteristics. Geomorphology 204(1):42–48

    Article  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng ATA, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FGR, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD III, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang YH, Khatibzadeh S, Khoo JP, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish ZA, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Hanafiah KM, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CDH, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA III, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJC, Steenland K, Stöckl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJL, Ezzati M (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260

    Article  Google Scholar 

  • Liu KH, Fang YT, Yu FM, Liu Q, Li FR, Peng SL (2010) Soil acidification in response to acid deposition in three subtropical forests of subtropical China. Pedosphere 20(3):399–408

    Article  CAS  Google Scholar 

  • McCauley A, Jones C, Jacobsen J (2009) Soil pH and organic matter. Nutr Manag Module 8:1–12

    Google Scholar 

  • McClure LF, Niles J, Kaufman HW (2016) Blood lead levels in young children: US, 2009-2015. J Pediatr 175:173–181

    Article  CAS  Google Scholar 

  • Ministry of Environmental Protection of China (MEP) (1995) Environmental quality standard for soils (GB15612-1995, grade 2). (in Chinese)

  • Muhammad S, Shah MT, Khan S (2011) Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem J 98:334–343

    Article  CAS  Google Scholar 

  • Nawab J, Shah MT, Khan S, Qing H, Khan K, Ali R (2015) Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. International Journal of Phytoremediation 17:801–813

    Article  CAS  Google Scholar 

  • Nawab J, Li G, Khan S, Sher H, Me A, Shamshad S, Khan A, Khan MA (2016) Health risk assessment from contaminated foodstuffs: a field study in chromite mining-affected areas northern Pakistan. Environ Sci Pollut Res 23(12):12227–12236

    Article  CAS  Google Scholar 

  • Noor-ul-Amin HA, Alamzeb S, Begum S (2013) Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chem 136:1515–1523

    Article  CAS  Google Scholar 

  • Nuapia Y, Chimuka L, Cukrowska E (2018) Assessment of heavy metals in raw food samples from open markets in two African cities. Chemosphere 196:339–346

    Article  CAS  Google Scholar 

  • Ogunkunle CO, Fatoba PO (2013) Pollution loads and the ecological risk assessment of soil heavy metals around a mega cement factory in Southwest Nigeria. Pol J Environ Stud 22:487–493

    CAS  Google Scholar 

  • Roba C, Roşu C, Piştea I, Ozunu A, Baciu C (2016) Heavy metal content in vegetables and fruits cultivated in Baia Mare mining area (Romania) and health risk assessment. Environ Sci Pollut Res 23(7):6062–6073

    Article  CAS  Google Scholar 

  • Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619

    Article  CAS  Google Scholar 

  • The Environmental Research Institution of Guangxi (1992) Research methodology and soil background value in Guangxi. Guangxi Science and Technology Press, Nanning (in Chinese)

    Google Scholar 

  • Vousta D, Grimanins A, Sammara C (1996) Trace elements in Vegetables grown in an Industrial Areas in relation to Soil and Air Particulate matter. Environ Poll 94(3), 325-335

  • Yuan QH, Ye YL, He ZS (2010) Heavy metal contamination investigation in Lanping mine site. Stra J of Pres Med 16(6):68–69 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jing Zhu for polishing the language in this manuscript.

Funding

This project was supported by the National Key Research and Development Program of China (2017YFD0801500); the National Science Foundation of China (41661077); the Guangxi Science and Technology Development Project of Major Projects (Guike AA17204047-3); the Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), the Ministry of Education, China (ERESEP2017Z01); and the Key Laboratory of Karst Ecology and Environment Change (Guangxi Normal University), Guangxi Department of Education, China (YRHJ16K002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangming Yu.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Fan, L., Li, Y. et al. Concentrations and health risks of heavy metals in soils and crops around the Pingle manganese (Mn) mine area in Guangxi Province, China. Environ Sci Pollut Res 25, 30180–30190 (2018). https://doi.org/10.1007/s11356-018-2997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2997-8

Keywords

Navigation