Skip to main content
Log in

Photocatalytic degradation of azo dye using core@shell nano-TiO2 particles to reduce toxicity

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Clean and safe water is fundamental for human and environmental health. Traditional remediation of textile dye-polluted water with chemical, physical, and biological processes has many disadvantages. Due to this, nano-engineered materials are drawing more attention to this area. However, the widespread use of nano-particles for this purpose may lead to photocatalytic degradation of xenobiotics, while increasing the risk of nano-particle-induced ecotoxicity. Therefore, we comparatively evaluated the toxicity of novel synthesized core@shell TiO2 and SiO2 nano-particles to embryonic stages of Danio rerio and Xenopus laevis. The ability of photocatalytic destruction of the synthesized nano-particles was tested using toxic azo dye, disperse red 65, and the effects of reducing the toxicity were evaluated. The reflux process was used to synthesize catalysts in the study. The samples were characterized by scanning electron microscopy, X-ray fluorescence spectroscopy, X-ray diffractometry, BET surface area, and UV–vis-diffuse reflectance spectra. It was determined that the synthesized nano-particles had no significant toxic effect on D. rerio and X. laevis embryos. On the other hand, photocatalytic degradation of the dye significantly reduced lethal effects on embryonic stages of the organisms. Therefore, we suggest that specific nano-particles may be useful for water remediation to prevent human health and environmental impact. However, further risk assessment should be conducted for the ecotoxicological risks of nano-particles spilled in aquatic environments and the relationship of photocatalytic interaction with nano-particles and xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe FR, Mendonca JN, Moraes LA, Oliveira GA, Gravato C, Soares AM, Oliveira DP (2017) Toxicological and behavioral responses as a tool to assess the effects of natural and synthetic dyes on zebrafish early life. Chemosphere 178:282–290

    Article  CAS  Google Scholar 

  • Aillon KL, Xie YM, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliver Rev 61:457–466

    Article  CAS  Google Scholar 

  • ASTM (American Society for Testing and Materials) (2004) ASTM standard guide for conducting the Frog Embryo Teratogenesis Assay– Xenopus (FETAX). E1439–98. American Society for Testing and Materials. vol. 11.05, Philadelphia

  • Birhanli A, Ozmen M (2005) Evaluation of the toxicity and teratogenity of six commercial textile dyes using the frog embryo teratogenesis assay-Xenopus. Drug Chem Toxicol 28:51–65

    CAS  Google Scholar 

  • Burello E (2015) Computational design of safer nanomaterials. Environ Sci-Nano 2:454–462

    Article  CAS  Google Scholar 

  • Caruso RA, Susha A, Caruso F (2001) Multilayered titania, silica, and Laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres. Chem Mater 13:400–409

    Article  CAS  Google Scholar 

  • Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S (2014) Core/shell nanoparticles in biomedical applications. Adv Colloid Interf Sci 209:8–39

    Article  CAS  Google Scholar 

  • Chequer FM, Angeli JP, Ferraz ER, Tsuboy MS, Marcarini JC, Mantovani MS, de Oliveira DP (2009) The azo dyes disperse red 1 and disperse orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutat Res 676:83–86

    Article  CAS  Google Scholar 

  • Chequer FM, Lizier TM, de Felicio R, Zanoni MV, Debonsi HM, Lopes NP, Marcos R, de Oliveira DP (2011) Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye disperse red 1. Toxicol in Vitro 25:2054–2063

    Article  CAS  Google Scholar 

  • Clemente Z, Castro VLSS, Moura MAM, Jonsson CM, Fraceto LF (2014) Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions. Aquat Toxicol 147:129–139

    Article  CAS  Google Scholar 

  • Dawson DA, Bantle JA (1987) Development of a reconstituted water medium and preliminary validation of the frog embryo teratogenesis assay Xenopus (Fetax). J Appl Toxicol 7:237–244

    Article  CAS  Google Scholar 

  • Demirors AF, van Blaaderen A, Imhof A (2009) Synthesis of eccentric titania-silica core-shell and composite particles. Chem Mater 21:979–984

    Article  CAS  Google Scholar 

  • Devin S, Buffet PE, Chatel A, Perrein-Ettajani H, Valsami-Jones E, Mouneyrac C (2017) The integrated biomarker response: a suitable tool to evaluate toxicity of metal-based nanoparticles. Nanotoxicology 11:1–6

    Article  CAS  Google Scholar 

  • Falahatdoost S, Ara MHM, Shaban Z, Ghazyani N (2015) Optical investigation of shell thickness in light scattering SiO2 particle with TiO2 nanoshells and its application in dye sensitized solar cells. Opt Mater 47:51–55

    Article  CAS  Google Scholar 

  • Farhadi A, Mohammadi MR, Ghorbani M (2017) On the assessment of photocatalytic activity and charge carrier mechanism of TiO2@SnO2 core-shell nanoparticles for water decontamination. J Photoch Photobio A 338:171–177

    Article  CAS  Google Scholar 

  • Faria M, Navas JM, Raldua D, Soares AM, Barata C (2014) Oxidative stress effects of titanium dioxide nanoparticle aggregates in zebrafish embryos. Sci Total Environ 470-471:379–389

    Article  CAS  Google Scholar 

  • Fujiwara K, Kuwahara Y, Sumida Y, Yamashita H (2017) Controlling photocatalytic activity and size selectivity of TiO2 encapsulated in hollow silica spheres by tuning silica shell structures using sacrificial biomolecules. Langmuir 33:6314–6321

    Article  CAS  Google Scholar 

  • Garcia-Alonso J, Rodriguez-Sanchez N, Misra SK, Valsami-Jones E, Croteau MN, Luoma SN, Rainbow PS (2014) Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii. Sci Total Environ 476-477:688–695

    Article  CAS  Google Scholar 

  • Gramowski A, Flossdorf J, Bhattacharya K, Jonas L, Lantow M, Rahman Q, Schiffmann D, Weiss DG, Dopp E (2010) Nanoparticles induce changes of the electrical activity of neuronal networks on microelectrode array neurochips. Environ Health Perspect 118:1363–1369

    Article  CAS  Google Scholar 

  • Gupta S, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657

    Article  CAS  Google Scholar 

  • Habibi MH, Bagheri P (2017) Enhanced photo-catalytic degradation of naphthol blue black on nano-structure MnCo2O4: charge separation of the photo-generated electron-hole pair. J Mater Sci-Mater El 28:289–294

    Article  CAS  Google Scholar 

  • Hariharan C (2006) Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: revisited. Appl Catal a-Gen 304:55–61

    Article  CAS  Google Scholar 

  • Harper SL, Carriere JL, Miller JM, Hutchison JE, Maddux BLS, Tanguay RL (2011) Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS Nano 5:4688–4697

    Article  CAS  Google Scholar 

  • Hou LR, Hua H, Cao H, Zhu SQ, Yuan CZ (2015) A core-shell TiO2@C nano-architecture: facile synthesis, enhanced visible photocatalytic performance and electrochemical capacitance. RSC Adv 5:62424–62432

    Article  CAS  Google Scholar 

  • Hu Y, Tsai HL, Huang CL (2003) Phase transformation of precipitated TiO2 nanoparticles. Mat Sci Eng a-Struct 344:209–214

    Article  Google Scholar 

  • Hung CH, Yuan C (2000) Reduction of azo-dye via TiO2-photocatalysis. J Chin Inst Environ Eng 10:209–216

    CAS  Google Scholar 

  • Ijadpanah-Saravi H, Zolfaghari M, Khodadadi A, Drogui P (2016) Synthesis, characterization, and photocatalytic activity of TiO2-SiO2 nanocomposites. Desalin Water Treat 57:14647–14655

    Article  CAS  Google Scholar 

  • Jovanovic B (2015) Critical review of public health regulations of titanium dioxide, a human food additive. Integr Environ Assess Manag 11:10–20

    Article  CAS  Google Scholar 

  • Khan SA, Jensen KF (2007) Microfluidic synthesis of titania shells on colloidal silica. Adv Mater 19:2556–2560

    Article  CAS  Google Scholar 

  • Khataee AR, Pons MN, Zahraa O (2009) Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. J Hazard Mater 168:451–457

    Article  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic-development of the zebrafish. Dev Dynam 203:253–310

    Article  CAS  Google Scholar 

  • Kwon YT, Song KY, Lee WI, Choi GJ, Do YR (2000) Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. J Catal 191:192–199

    Article  CAS  Google Scholar 

  • Lakshmi PV, Rajagopalan V (2016) A new synergetic nanocomposite for dye degradation in dark and light. Sci Rep-Uk 6:38606

    Article  Google Scholar 

  • Lee JW, Kong S, Kim WS, Kim J (2007) Preparation and characterization of SiO2/TiO2 core-shell particles with controlled shell thickness. Mater Chem Phys 106:39–44

    Article  CAS  Google Scholar 

  • Li L, Zhu W, Zhang P, Chen Z, Han W (2003) Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-TiO2 thin films supported on Al sheet. Water Res 37:3646–3651

    Article  CAS  Google Scholar 

  • Li JF, Zhang YJ, Ding SY, Panneerselvam R, Tian ZQ (2017) Core-shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117:5002–5069

    Article  CAS  Google Scholar 

  • Milenova K, Zaharieva K, Stambolova I, Blaskov V, Eliyas A, Dimitrov L (2017) Photocatalytic performance of TiO2 , CeO2, ZnO and TiO2 -CeO2 -ZnO in the course of methyl orange dye degradation. J Chem Technol Metallurgy 52:13–19

    CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • NAS (1996) National Academy of Sciences. Guide for the Care and Use of Laboratory Animals. National Research Council, Institute for Laboratory Animal Research, Washington, D.C. http://www.nap.edu/catalog/5140.html

    Google Scholar 

  • Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425

    Article  CAS  Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos TAP, Rasteiro MG, Abrantes N, Goncalves F, Soares AMVM, Duarte AC, Pereira R (2015) Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment. Environ Sci Pollut R 22:13212–13224

    Article  CAS  Google Scholar 

  • Ostaszewska T, Chojnacki M, Kamaszewski M, Sawosz-Chwalibog E (2016) Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon. Environ Sci Pollut R 23:1621–1633

    Article  CAS  Google Scholar 

  • Ozmen M, Gungordu A, Erdemoglu S, Ozmen N, Asilturk M (2015) Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO2. Aquat Toxicol 165:144–153

    Article  CAS  Google Scholar 

  • Pan X, Zhao Y, Liu S, Korzeniewski CL, Wang S, Fan ZY (2012) Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. Acs Appl Mater Inter 4:3944–3950

    Article  CAS  Google Scholar 

  • Poulios I, Avranas A, Rekliti E, Zouboulis A (2000) Photocatalytic oxidation of auramine O in the presence of semiconducting oxides. J Chem Technol Biot 75:205–212

    Article  CAS  Google Scholar 

  • Qamar M, Saquib M, Muneer M (2005) Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide. Dyes Pigments 65:1–9

    Article  CAS  Google Scholar 

  • Reza KM, Kurny ASW, Gylshan F (2017) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci 7:1569–1578

    Article  CAS  Google Scholar 

  • Robert D, Keller N, Selli E (2017) Environmental photocatalysis and photochemistry for a sustainable world: a big challenge. Environ Sci Pollut Res Int 24:12503–12505

    Article  Google Scholar 

  • Saggioro EM, Oliveira AS, Pavesi T, Maia CG, Ferreira LFV, Moreira JC (2011) Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules 16:10370–10386

    Article  CAS  Google Scholar 

  • Shanmugam S, Gabashvili A, Jacob DS, Yu JC, Gedanken A (2006) Synthesis and characterization of TiO2@C core-shell composite nanoparticles and evaluation of their photocatalytic activities. Chem Mater 18:2275–2282

    Article  CAS  Google Scholar 

  • Shiba K, Takei T, Ogawa M (2016) Mesoporous silica coated silica-titania spherical particles: from impregnation to core-shell formation. Dalton T 45:18742–18749

    Article  CAS  Google Scholar 

  • Sonune A, Ghate R (2004) Developments in wastewater treatment methods. Desalination 167:55–63

    Article  CAS  Google Scholar 

  • Sounderya N, Zhang Y (2008) Use of core/shell structured nanoparticles for biomedical applications. Recent Pat Biomed Eng 1:34–42

    Article  CAS  Google Scholar 

  • Sun M, Chen GD, Zhang YK, Wei Q, Ma ZM, Du B (2012) Efficient degradation of azo dyes over Sb2S3/TiO2 heterojunction under visible light irradiation. Ind Eng Chem Res 51:2897–2903

    Article  CAS  Google Scholar 

  • Ullah S, Ferreira-Neto EP, Pasa AA, Alcantara CCJ, Acuna JJS, Bilmes SA, Ricci MLM, Landers R, Fermino TZ, Rodrigues UP (2015) Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles. Appl Catal B-Environ 179:333–343

    Article  CAS  Google Scholar 

  • Wang N, Li J, Zhu LH, Dong Y, Tang HQ (2008) Highly photocatalytic activity of metallic hydroxide/titanium dioxide nanoparticles prepared via a modified wet precipitation process. J Photoch Photobio A 198:282–287

    Article  CAS  Google Scholar 

  • Westerfield M (2007) The zebrafish book, 5th edition; a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene

    Google Scholar 

  • Westerhoff P, Song GX, Hristovski K, Kiser MA (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monitor 13:1195–1203

    Article  CAS  Google Scholar 

  • Yang Y, Wang H, Li J, He B, Wang T, Liao S (2012) Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment. Environ Sci Technol 46:6815–6821

    Article  CAS  Google Scholar 

  • You H, Wu Z, Jia Y, Xu X, Xia Y, Han Z, Wang Y (2017) High-efficiency and mechano-/photo- bi-catalysis of piezoelectric-ZnO@ photoelectric-TiO2 core-shell nanofibers for dye decomposition. Chemosphere 183:528–535

    Article  CAS  Google Scholar 

  • Zhang J, Xu Q, Feng Z, Li M, Li C (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Edit 47:1766–1769

    Article  CAS  Google Scholar 

  • Zhang H, Chen D, Lv XJ, Wang Y, Chang HX, Li JH (2010) Energy-efficient photodegradation of azo dyes with TiO2 nanoparticles based on photoisomerization and alternate UV-visible light. Environ Sci Technol 44:1107–1111

    Article  CAS  Google Scholar 

  • Zhang Y, Gao F, Wanjala B, Li ZY, Cernigliaro G, Gu ZY (2016) High efficiency reductive degradation of a wide range of azo dyes by SiO2-Co core-shell nanoparticles. Appl Catal B-Environ 199:504–513

    Article  CAS  Google Scholar 

  • Zhao L, Yu JG, Cheng B (2005) Preparation and characterization of SiO2/TiO2 composite microspheres with microporous SiO2 core/mesoporous TiO2 shell. J Solid State Chem 178:1818–1824

    Article  CAS  Google Scholar 

Download references

Funding

The financial supports as bilateral collaborative project from The Scientific and Technological Research Council of Turkey (TÜBİTAK) (grant no.: 113Z561) and National Science Foundation in the USA (grant no.: 1438165) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ozmen.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozmen, N., Erdemoglu, S., Gungordu, A. et al. Photocatalytic degradation of azo dye using core@shell nano-TiO2 particles to reduce toxicity. Environ Sci Pollut Res 25, 29493–29504 (2018). https://doi.org/10.1007/s11356-018-2942-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2942-x

Keywords

Navigation