Skip to main content
Log in

Enhanced photo-catalytic degradation of naphthol blue black on nano-structure MnCo2O4: charge separation of the photo-generated electron–hole pair

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MnCo2O4 nano-composite photocatalyst was synthesized via co-precipitation technique. Composite formation of cobalt oxide with manganese was intended to create tail states within the band gap of cobalt oxide for better charge separation of the photo-generated electron–hole pairs in nano-composite photocatalyst. The MnCo2O4 nano-composite can effectively mineralize organic contaminants. MnCo2O4 nano-composite photocatalyst was characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), transmission electron microscopy, energy dispersive X-ray spectroscopy, fourier transform infrared spectroscopy (FTIR) and UV–Vis diffuse reflectance spectra (UV–Vis DRS). X-ray diffraction analysis showed cubic manganese cobalt oxide MnCo2O4. FESEM results showed spherical nanoparticles with cauliflower nanostructure. The mean size of particles was in the ranges of 30–60 nm. The band gap for MnCo2O4 nano-composite photocatalyst was 1.95 and 2.49 eV, based on the results of diffuse reflectance spectra. FTIR results showed two type of fundamental absorption bands at 620 and 505 cm−1 due to stretching vibrations of Mn–O and Co–O, respectively. The photo-catalytic activitie of nano-composite photocatalysts were investigated using a naphthol blue black dye as textile dye contaminant and the results showed an outstanding performance yielded 92 % total organic carbon removals attributed to charge separation of the photo-generated electron–hole pairs in nano-composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.M. Hunge, V.S. Mohite, S.S. Kumbhar, K.Y. Rajpure, A.V. Moholkar, H. Bhosale, J. Mater. Sci.: Mater. Electron. 26, 8404 (2015)

    Google Scholar 

  2. D. Ghanbari, S. Sharifi, A. Naraghi, G. Nabiyouni, J. Mater. Sci.: Mater. Electron. 27, 5315 (2016)

    Google Scholar 

  3. S. Moshtaghi, S. Gholamrezaei, M. Salavati Niasari, P. Mehdizadeh, J. Mater. Sci: Mater. Electron 27, 414 (2016)

    Google Scholar 

  4. F. Beshkar, O. Amiri, M. Salavati-Niasari, F. Beshkar, J. Mater. Sci.: Mater. Electron. 26, 8182 (2015)

    Google Scholar 

  5. A.H. Kianfar, P. Dehghani, M.M. Momeni, Mater Sci: Mater Electron. 27, 3368 (2016)

    Google Scholar 

  6. M.H. Habibi, B. Karimi, Iran. J. Environ. Technol. 1, 31 (2015)

    Google Scholar 

  7. A.A. El-Bindary, A.Z. El-Sonbati, A.A. Al-Sarawy, K.S. Mohamed, M.A. Farid, Spectrochim. Acta A 136, 1842 (2015)

    Article  Google Scholar 

  8. M.R. Fathi, A. Asfaram, A. Farhangi, Spectrochim. Acta A 135, 364 (2015)

    Article  Google Scholar 

  9. A. Nouri, A. Fakhri, Spectrochim. Acta A 138, 563 (2015)

    Article  Google Scholar 

  10. M.M. Momeni, Y. Ghayeb, J. Mol. Catal. A Chem. 417, 107 (2016)

    Article  Google Scholar 

  11. M.M. Momeni, M. Mirhosseini, M. Chavoshi, A. Hakimizade, J. Mater. Sci.: Mater. Electron. 27, 3941 (2016)

    Google Scholar 

  12. M.M. Momeni, M. Mirhosseini, M. Chavoshi, Ceram. Int. 42, 9133 (2016)

    Article  Google Scholar 

  13. A. Senthilraja, B. Subash, P. Dhatshanamurthi, M. Swaminathan, M. Shanthi, Spectrochim. Acta A 138, 31 (2015)

    Article  Google Scholar 

  14. S.J. Shettleworth, Cognition, Evolution and Behavior, 2nd edn. (Oxford, New York, 2010)

    Google Scholar 

  15. W. Glaze, J.W. Kang, D.H. Chapin, J. Inter. Ozone Assoc. 9, 335 (1987)

    Article  Google Scholar 

  16. D. Rajamanickam, P. Dhatshanamurthi, M. Shanthi, Spectrochim. Acta A 138, 489 (2015)

    Article  Google Scholar 

  17. N. Habibi, Spectrochim. Acta A 136, 1450 (2015)

    Article  Google Scholar 

  18. N. Habibi, Spectrochim. Acta A 131, 55 (2014)

    Article  Google Scholar 

  19. N. Habibi, Spectrochim. Acta A 125, 359 (2014)

    Article  Google Scholar 

  20. N. Habibi, B. Karimi, J. Ind. Eng. Chem. 20, 3033 (2014)

    Article  Google Scholar 

  21. Y. Shao, J. Sun, L. Gao, J. Phys. Chem. C 113, 6566 (2009)

    Article  Google Scholar 

  22. Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, J. Am. Chem. Soc. 134, 3517 (2012)

    Article  Google Scholar 

  23. J.J.-Y. Wang, P.Y. Kuang, N. Li, Z.Q. Liu, Y.Z. Su, S. Chen, Ceram. Int. (2015). doi:10.1016/j.ceramint.2015.03

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the University of Isfahan for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Habibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, M.H., Bagheri, P. Enhanced photo-catalytic degradation of naphthol blue black on nano-structure MnCo2O4: charge separation of the photo-generated electron–hole pair. J Mater Sci: Mater Electron 28, 289–294 (2017). https://doi.org/10.1007/s10854-016-5523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5523-0

Keywords

Navigation