Skip to main content

Advertisement

Log in

Impacts of isopyrazam exposure on the development of early-life zebrafish (Danio rerio)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Isopyrazam (IPZ) is a broad spectrum succinate dehydrogenase inhibitor fungicide. Little is known about its potential ecological risks of aquatic organisms recently. The present study examined the embryonic development effects of zebrafish exposed to IPZ under static condition using a fish embryo toxicity test. The lowest observed effect concentration of IPZ was 0.025 mg/L in 4-day exposure. Developmental abnormalities, including edema, small head deformity, body deformation and decreased pigmentation, and mortality were observed in zebrafish embryos of 0.05 mg/L and higher concentrations, which shown concentration dependency. The heart rate of zebrafish was disrupted by IPZ. Moreover, enzyme and gene experiments shown that IPZ exposure caused oxidative stress of zebrafish. Furthermore, it induced a decrease of succinate dehydrogenase (SDH) enzyme activity and gene transcription level in zebrafish larvae. It can be speculated that IPZ may have a lethal effect on zebrafish, which is accompanied by decreased SDH activity, oxidative stress, and abnormality. These results provide toxicological data about the IPZ on aquatic non-target organisms, which could be useful for further understanding potential environmental risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abad-Fuentes A, Ceballos-Alcantarilla E, Mercader JV, Agulló C, Abad-Somovilla A, Esteve-Turrillas FA (2015) Determination of succinate-dehydrogenase-inhibitor fungicide residues in fruits and vegetables by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 407(14):4207–4211

    CAS  Google Scholar 

  • Andrade TS, Henriques JF, Almeida AR, Machado AL, Koba O, Giang PT, Soares AMVM, Domingues I (2016) Carbendazim exposure induces developmental, biochemical and behavioural disturbance in zebrafish embryos. Aquat Toxicol 170:390–399

    CAS  Google Scholar 

  • APVMA (2018) Australian pesticides and veterinary medicines authority. Proposed registration of Seguris Flexi Fungicide containing the new active constituent isopyrazam. https://apvma.gov.au/node/28996. Accessed 21 April 2018

  • Avenot HF, Michailides TJ (2010) Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Prot 29(7):643–651

    CAS  Google Scholar 

  • Avetta P, Marchetti G, Minella M, Pazzi M, De Laurentiis E, Maurino V, Minero C, Vione D (2014) Phototransformation pathways of the fungicide dimethomorph ((E, Z) 4-[3-(4-chlorophenyl)-3-(3, 4-dimethoxyphenyl)-1-oxo-2-propenyl] morpholine), relevant to sunlit surface waters. Sci Total Environ 500:351–360

    Google Scholar 

  • Blahová J, Plhalová L, Hostovský M, Divišová L, Dobšíková R, Mikulíková I, Stěpánová S, Svobodová Z (2013) Oxidative stress responses in zebrafish danio rerio after subchronic exposure to atrazine. Food Chem Toxicol 61(6):82–85

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Braunbeck T, Böttcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N (2005) Towards an alternative for the acute fish LC50 test in chemical assessment: the fish embryo toxicity test goes multi-species—an update. ALTEX 22(2):87–102

    Google Scholar 

  • Braunbeck T, Kais B, Lammer E, Otte J, Schneider K, Stengel D, Strecker R (2015) The fish embryo test (FET): origin, applications, and future. Environ Sci Pollut Res 22(21):16247–16261

    CAS  Google Scholar 

  • Bunzel K, Schäfer RB, Thrän D, Kattwinkel M (2015) Pesticide runoff from energy crops: a threat to aquatic invertebrates? Sci Total Environ 537:187–196

    CAS  Google Scholar 

  • Busquet F, Strecker R, Rawlings JM, Belanger SE, Braunbeck T, Carr GJ, Cenijn P, Fochtman P, Gourmelon A, Hübler N, Kleensang A, Knöbel M, Kussatz C, Legler J, Lillicrap A, Martínez-Jerónimo F, Polleichtner C, Rzodeczko H, Salinas E, Schneider KE, Scholz S, van den Brandhof EJ, van der Ven LT, Walter-Rohde S, Weigt S, Witters H, Halder M (2014) OECD validation study to assess intra-and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regul Toxicol Pharmacol 69(3):496–511

    CAS  Google Scholar 

  • Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15(1):7–10

    CAS  Google Scholar 

  • Cambier S, Benard G, Mesmer-Dudons N, Gonzalez P, Rossignol R, Brethes D, Bourdineaud JP (2009) At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebra fish (Danio rerio). Int J Biochem Cell Biol 41(4):791–799

    CAS  Google Scholar 

  • Chen JN, Haffter P, Odenthal J, Vogelsang E, Brand M, Van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Nüsslein-Volhard C (1996) Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123(1):293–302

    CAS  Google Scholar 

  • De Luca E, Zaccaria GM, Hadhoud M, Rizzo G, Ponzini R, Morbiducci U, Santoro MM (2014) ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Sci Rep 4:649–652

    Google Scholar 

  • Di Giulio RT, Washburn PC, Wenning RJ, Winston GW, Jewell CS (1989) Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ Toxicol Chem 8(12):1103–1123

    Google Scholar 

  • Driessen M, Vitins AP, Pennings JL, Kienhuis AS, van de Water B, van der Ven LT (2015) A transcriptomics-based hepatotoxicity comparison between the zebrafish embryo and established human and rodent in vitro and in vivo models using cyclosporine A, amiodarone and acetaminophen. Toxicol Lett 232(2):403–412

    CAS  Google Scholar 

  • EPA (2004) United States Environmental Protection Agency. Chemical hazard classification and labeling: comparison of OPP requirements and the GHS. https://www.epa.gov/sites/production/files/2015-09/documents/ghscriteria-summary.pdf. Accessed 11 Dec 2017

  • EPA (2017) United States Environmental Protection Agency. Isopyrazam Fact Sheet. https://www3.epa.gov/pesticides/chem_search/reg_actions/pending/fs_PC-129222_05-Oct-11.pdf. Accessed 20 April 2018

  • Fernández D, Voss K, Bundschuh M, Zubrod JP, Schäfer RB (2015) Effects of fungicides on decomposer communities and litter decomposition in vineyard streams. Sci Total Environ 533:40–48

    Google Scholar 

  • Fong HCH, Ho JCH, Cheung AHY, Lai KP, Tse WKF (2016) Developmental toxicity of the common UV filter, benophenone-2, in zebrafish embryos. Chemosphere 164:413–420

    CAS  Google Scholar 

  • FRAC (2017) FRAC Code List 2017: Fungicides sorted by mode of action (including FRAC Code numbering). http://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2017-final.pdf. Accessed 11 December 2017

  • Glickman NS, Yelon D (2002) Cardiac development in zebrafish: coordination of form and function. Semin Cell Dev Biol 13(6):507–513

    Google Scholar 

  • Gulkowska A, Buerge IJ, Poiger T (2014) Online solid phase extraction LC–MS/MS method for the analysis of succinate dehydrogenase inhibitor fungicides and its applicability to surface water samples. Anal Bioanal Chem 406(25):6419–6427

    CAS  Google Scholar 

  • Han Y, Liu T, Wang J, Wang J, Zhang C, Zhu L (2016) Genotoxicity and oxidative stress induced by the fungicide azoxystrobin in zebrafish (Danio rerio) livers. Pestic Biochem Physiol 133:13–19

    CAS  Google Scholar 

  • Hand LH, Moreland HJ (2014) Surface water mineralization of isopyrazam according to OECD 309: observations on implementation of the new data requirement within agrochemical regulation. Environ Toxicol Chem 33(3):516–524

    CAS  Google Scholar 

  • Hand LH, Oliver RG (2010) The behavior of isopyrazam in aquatic ecosystems: implementation of a tiered investigation. Environ Toxicol Chem 29(12):2702–2712

    CAS  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54(1):1015–1069

    CAS  Google Scholar 

  • He L, Cui K, Ma D, Shen R, Huang X, Jiang J, Mu W, Liu F (2017) Activity, translocation and persistence of isopyrazam for controlling cucumber powdery mildew. Plant Dis 101(7):1139–1144

    CAS  Google Scholar 

  • Hederstedt L, Rutberg L (1981) Succinate dehydrogenase—a comparative review. Microbiol Rev 45(4):542–555

    CAS  Google Scholar 

  • Hermann AC, Millard PJ, Blake SL, Kim CH (2004) Development of a respiratory burst assay using zebrafish kidneys and embryos. J Immunol Methods 292(1):119–129

    CAS  Google Scholar 

  • Hermsen SA, van den Brandhof EJ, van der Ven LT, Piersma AH (2011) Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies. Toxicol in Vitro 25(3):745–753

    CAS  Google Scholar 

  • Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86(1):6–19

    CAS  Google Scholar 

  • Jin Y, Zhang X, Shu L, Chen L, Sun L, Qian H, Liu W, Fu Z (2010) Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere 78(7):846–852

    CAS  Google Scholar 

  • Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8(9–10):1865–1879

    CAS  Google Scholar 

  • Keon JP, White GA, Hargreaves JA (1991) Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Curr Genet 19(6):475–481

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    CAS  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101(1):13–30

    CAS  Google Scholar 

  • Massarsky A, Kozal JS, Di Giulio RT (2017) Glutathione and zebrafish: old assays to address a current issue. Chemosphere 168:707–715

    CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    CAS  Google Scholar 

  • Mnif W, Hassine AIH, Bouaziz A, Bartegi A, Thomas O, Roig B (2011) Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health 8(6):2265–2303

    CAS  Google Scholar 

  • Moreno-González R, Campillo JA, García V, León VM (2013) Seasonal input of regulated and emerging organic pollutants through surface watercourses to a Mediterranean coastal lagoon. Chemosphere 92(3):247–257

    Google Scholar 

  • Moura MA, Oliveira R, Jonsson CM, Domingues I, Soares AM, Nogueira AJ (2017) The sugarcane herbicide ametryn induces oxidative stress and developmental abnormalities in zebrafish embryos. Environ Sci Pollut Res:1–10

  • Mu X, Chai T, Wang K, Zhu L, Huang Y, Shen G, Li Y, Li X, Wang C (2016) The developmental effect of difenoconazole on zebrafish embryos: a mechanism research. Environ Pollut 212:18–26

    CAS  Google Scholar 

  • Niemann S, Müller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26(3):268–270

    CAS  Google Scholar 

  • Noyes PD, Garcia GR, Tanguay RL (2016) Zebrafish as an in vivo model for sustainable chemical design. Green Chem 18(24):6410–6430

    CAS  Google Scholar 

  • OECD (2013) Fish embryos acute toxicity (FET) test, Test Guideline No. 236, OECD guidelines for testing of chemicals. Organization for Economic Co-operation and Development, Paris

    Google Scholar 

  • Olivari FA, Hernández PP, Allende ML (2008) Acute copper exposure induces oxidative stress and cell death in lateral line hair cells of zebrafish larvae. Brain Res 1244:1–12

    CAS  Google Scholar 

  • Oyedotun KS, Lemire BD (2004) The quaternary structure of the saccharomyces cerevisiae succinate dehydrogenase homology modeling, cofactor docking, and molecular dynamics simulation studies. J Biol Chem 279(10):9424–9431

    CAS  Google Scholar 

  • Plummer SM, Wright J, Currie RA (2018) Dose-dependent effects on rat liver miRNAs 200a/b and 429: potential early biomarkers of liver carcinogenesis. Toxicol Rep 5:309–313

    CAS  Google Scholar 

  • Rasmussen JJ, McKnight US, Loinaz MC, Thomsen NI, Olsson ME, Bjerg PL, Binning PJ, Kronvang B (2013) A catchment scale evaluation of multiple stressor effects in headwater streams. Sci Total Environ 442:420–431

    CAS  Google Scholar 

  • Reilly TJ, Smalling KL, Orlando JL, Kuivila KM (2012) Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States. Chemosphere 89(3):228–234

    CAS  Google Scholar 

  • Rouquie D, Tinwell H, Blanck O, Schorsch F, Geter D, Wason S, Bars R (2014) Thyroid tumor formation in the male mouse induced by fluopyram is mediated by activation of hepatic CAR/PXR nuclear receptors. Regul Toxicol Pharmacol 70(3):673–680

    CAS  Google Scholar 

  • Sarmah S, Marrs JA (2016) Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function. Int J Mol Sci 17:2123

    Google Scholar 

  • Scalliet G, Bowler J, Luksch T, Kirchhofer-Allan L, Steinhauer D, Ward K, Niklaus M, Verras A, Csukai M, Daina A, Fonné-Pfister R (2012) Mutagenesis and functional studies with succinate dehydrogenase inhibitors in the wheat pathogen Mycosphaerella graminicola. PLoS One 7(4):e35429

    CAS  Google Scholar 

  • Selderslaghs IWT, Blust R, Witters HE (2012) Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reprod Toxicol 33(2):142–154

    CAS  Google Scholar 

  • Sies H (1986) Biochemistry of oxidative stress. Angew Chem Int Ed 25(12):1058–1071

    Google Scholar 

  • Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27(9):916–921

    CAS  Google Scholar 

  • Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    CAS  Google Scholar 

  • Smalling KL, Kuivila KM, Orlando JL, Phillips BM, Anderson BS, Siegler K, Huntb JW, Hamilton M (2013) Environmental fate of fungicides and other current-use pesticides in a central California estuary. Mar Pollut Bull 73(1):144–153

    CAS  Google Scholar 

  • Song Y, Zhang Z, Chen L, He L, Lu H, Ren Y, Mu W, Feng L (2016) Baseline sensitivity of botrytis cinerea to the succinate dehydrogenase inhibitor isopyrazam and efficacy of this fungicide. Plant Dis 100(7):1314–1320

    CAS  Google Scholar 

  • Stengel D, Wahby S, Braunbeck T (2018) In search of a comprehensible set of endpoints for the routine monitoring of neurotoxicity in vertebrates: sensory perception and nerve transmission in zebrafish (Danio rerio) embryos. Environ Sci Pollut Res:1–19

  • Stowe DF, Camara AKS (2009) Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 11(6):1373–1414

    CAS  Google Scholar 

  • Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, Braunbeck T (2012) Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33(2):128–132

    Google Scholar 

  • Tanabe A, Mitobe H, Kawata K, Yasuhara A, Shibamoto T (2001) Seasonal and spatial studies on pesticide residues in surface waters of the Shinano River in Japan. J Agric Food Chem 49(8):3847–3852

    CAS  Google Scholar 

  • Tinwell H, Rouquié D, Schorsch F, Geter D, Wason S, Bars R (2014) Liver tumor formation in female rat induced by fluopyram is mediated by CAR/PXR nuclear receptor activation. Regul Toxicol Pharmacol 70(3):648–658

    CAS  Google Scholar 

  • Townsend DM, Tew KD (2003) The role of glutathione-s-transferase in anti-cancer drug resistance. Oncogene 22(47):7369–7375

    CAS  Google Scholar 

  • Tsuda T, Nakamura T, Inoue A, Tanaka K (2009) Pesticides in water and sediment from littoral area of Lake Biwa. Bull Environ Contam Toxicol 82(6):683–689

    CAS  Google Scholar 

  • Tu W, Niu L, Liu W, Xu C (2013) Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity. Ecotoxicol Environ Saf 89:189–195

    CAS  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74

    CAS  Google Scholar 

  • Wang Y, Yang G, Dai D, Xu Z, Cai L, Wang Q, Yu Y (2017) Individual and mixture effects of five agricultural pesticides on zebrafish (Danio rerio) larvae. Environ Sci Pollut Res 24(5):4528–4536

    CAS  Google Scholar 

  • Westerfield M (1995) The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). University of Oregon Press, Eugene

    Google Scholar 

  • Wiegand C, Krause E, Steinberg C, Pflugmacher S (2001) Toxicokinetics of atrazine in embryos of the zebrafish (Danio rerio). Ecotoxicol Environ Saf 49(3):199–205

    CAS  Google Scholar 

  • Wu S, Lei L, Liu M, Song Y, Lu S, Li D, Shi H, Raley-Susman KM, He D (2018) Single and mixture toxicity of strobilurin and sdhi fungicides to xenopus tropicalis embryos. Ecotoxicol Environ Saf 153:8–15

    CAS  Google Scholar 

  • Xiao W, Sarsour EH, Wagner BA, Doskey CM, Buettner GR, Domann FE, Goswami PC (2016) Succinate dehydrogenase activity regulates PCB3-quinone-induced metabolic oxidative stress and toxicity in HaCaT human keratinocytes. Arch Toxicol 90(2):319–332

    CAS  Google Scholar 

  • Yang Y, Liu W, Mu X, Qi S, Fu B, Wang C (2016a) Biological response of zebrafish embryos after short-term exposure to thifluzamide. Sci Rep 6:38485

    CAS  Google Scholar 

  • Yang Y, Qi S, Wang D, Wang K, Zhu L, Chai T, Wang C (2016b) Toxic effects of thifluzamide on zebrafish (Danio rerio). J Hazard Mater 307:127–136

    CAS  Google Scholar 

  • Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299(5607):700–704

    CAS  Google Scholar 

  • Yoshida M, Inoue K, Takahashi M (2015) Predictive modes of action of pesticides in uterine adenocarcinoma development in rats. J Toxicol Pathol 28(4):207–216

    CAS  Google Scholar 

  • Zhu B, Liu L, Gong YX, Ling F, Wang GX (2014) Triazole-induced toxicity in developing rare minnow (Gobiocypris rarus) embryos. Environ Sci Pollut R 21(23):13625–13635

    CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Jason Martin (United States Department of Agriculture) for paper improvement.

Funding

This study received grants from the Project of Science and Technology by Zhejiang Food and Drug Administration (grant number SP201717), the Project by Science Technology Department of Zhejiang Province (grant number LGF18B070003), and the National Natural Science Foundation of China (grant number 21277126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Table S1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Xu, X., Zhou, Y. et al. Impacts of isopyrazam exposure on the development of early-life zebrafish (Danio rerio). Environ Sci Pollut Res 25, 23799–23808 (2018). https://doi.org/10.1007/s11356-018-2449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2449-5

Keywords

Navigation