Skip to main content

Advertisement

Log in

Ecotoxicological assessment of perchlorate using in vitro and in vivo assays

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Perchlorate is an inorganic ion widespread in the environment, generated as a natural and anthropogenic pollutant, with known endocrine disruption properties in the thyroid gland. Nonetheless, there are few reports of its ecotoxicological impact on wildlife. The aim of this study was to evaluate the adverse effects of KClO4 exposure on different cell lines, HEK, N2a, and 3T3, as well as in ecological models such as Vibrio fischeri, Pseudokirchneriella subcapitata, Daphnia magna, and Eisenia fetida. Perchlorate exhibited similar toxicity against tested cell lines, with LC50 values of 19, 15, and 19 mM for HEK, N2a, and 3T3, respectively; whereas in V. fischeri, the toxicity, examined as bioluminescence reduction, was considerably lower (EC50 = 715 mM). The survival of the freshwater algae P. subcapitata was significatively impaired by perchlorate (LC50 = 72 mM), and its effect on the lethality in the crustacean D. magna was prominent (LC50 = 5 mM). For the earthworm E. fetida, the LC50 was 56 mM in soil. In this organism, perchlorate induced avoidance behavior, weight loss, and decreased egg production and hatchling, as well as morphological and histopathological effects, such as malformations, dwarfism, and necrosis. In conclusion, perchlorate toxicity varies according to the species, although E. fetida is a sensitive model to generate information regarding the toxicological impact of KClO4 on biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbondanzi F, Cachada A, Campisi T, Guerra R, Raccagni M, Iacondini A (2003) Optimisation of a microbial bioassay for contaminated soil monitoring: bacterial inoculum standardisation and comparison with Microtox® assay. Chemosphere 53(8):889–897. https://doi.org/10.1016/S0045-6535(03)00717-3

    Article  CAS  Google Scholar 

  • Acevedo-Barrios R, Bertel-Sevilla A, Alonso-Molina J, Olivero-Verbel J (2016) Perchlorate tolerant bacteria from saline environments at the Caribbean region of Colombia. Toxicol Lett (259):S103. https://doi.org/10.1016/j.toxlet.2016.07.257

  • Aruoja V (2011) Algae Pseudokircheriella subcapitata in environmental hazard evaluation of chemicals and synthetic nanoparticles. PhD Thesis, Estonian University of Life Science. http://hdl.handle.net/10492/154

  • Cáceres T, Megharaj M, Naidu R (2008) Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp. Sci Total Environ 398(1):53–59. https://doi.org/10.1016/j.scitotenv.2008.03.022

    Article  CAS  Google Scholar 

  • Cañas JE, Cheng Q, Tian K, Anderson TA (2006) Optimization of operating conditions for the determination of perchlorate in biological samples using preconcentration/preelution ion chromatography. J Chromatogr 1103(1):102–109

    Article  CAS  Google Scholar 

  • Chen HX, Ding MH, Liu Q, Peng KL (2014) Change of iodine load and thyroid homeostasis induced by ammonium perchlorate in rats. J Huazhong Univ Sci Technol (Med Sci) 34(5):672–678

    Article  CAS  Google Scholar 

  • Clewell RA, Merrill EA, Narayanan L, Gearhart JM, Robinson PJ (2004) Evidence for competitive inhibition of iodide uptake by perchlorate and translocation of perchlorate into the thyroid. Int J Toxicol 23(1):17–23

    Article  CAS  Google Scholar 

  • Cotou E, Papathanassiou E, Tsangaris C (2002) Assessing the quality of marine coastal environments: comparison of scope for growth and Microtox® bioassay results of pollution gradient areas in eastern Mediterranean (Greece). Environ Pollut 119(2):141–149. https://doi.org/10.1016/S0269-7491(01)00337-2

    Article  CAS  Google Scholar 

  • Czekanska EM (2011) Assessment of cell proliferation with resazurin-based fluorescent dye. Methods Mol Biol 740:27–32. https://doi.org/10.1007/978-1-61779-108-6_5

    Article  CAS  Google Scholar 

  • Dahl R (2005) Drinking water: NAS reports on perchlorate safety, 2005. Environ Health Perspect 113(7):A449

    Article  Google Scholar 

  • Dalzell D, Alte S, Aspichueta E, De la Sota A, Etxebarria J, Gutierrez M, Hoffmann C, Sales D, Obst U, Christofi N (2002) A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere 47(5):535–545. https://doi.org/10.1016/S0045-6535(01)00331-9

    Article  CAS  Google Scholar 

  • Domínguez J (2004) State-of-the-art and new perspectives on vermicomposting research. In: Earthworm ecology. CRC Press, Boca Raton

    Google Scholar 

  • Domínguez J, Pérez-Losada M (2010) Eisenia fetida (Savigny, 1826) y Eisenia andrei Bouché, 1972 son dos especies diferentes de lombrices de tierra. Acta Zool Mex 26:321–331

    Google Scholar 

  • Domínguez J, Velando A, Ferreiro A (2005) Are Eisenia fetida (Savigny, 1826) and Eisenia andrei Bouché (1972) (Oligochaeta, Lumbricidae) different biological species? Pedobiologia 49(1):81–87. https://doi.org/10.1016/j.pedobi.2004.08.005

    Article  Google Scholar 

  • Duan Q, Wang T, Zhang N, Perera V, Liang X, Abeysekera IR, Yao X (2016) Propylthiouracil, perchlorate, and thyroid-stimulating hormone modulate high concentrations of iodide instigated mitochondrial superoxide production in the thyroids of metallothionein I/II knockout mice. Endocrinol Metab (Seoul) 31(1):174–184. https://doi.org/10.3803/EnM.2016.31.1.174

    Article  CAS  Google Scholar 

  • El-Alawi YS, McConkey BJ, George Dixon D, Greenberg BM (2002) Measurement of short- and long-term toxicity of polycyclic aromatic hydrocarbons using luminescent bacteria. Ecotoxicol Environ Saf 51(1):12–21. https://doi.org/10.1006/eesa.2001.2108

    Article  CAS  Google Scholar 

  • EPA, Environmental Protection Agency (2005) Perchlorate and Perchlorate Salts

  • EPA, Environmental Protection Agency (2009) Revised Assessment Guidance for Perchlorate

  • EPA, U.S. Environmental Protection Agency (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. fifth ed. U.S. Environmental Protection Agency Office of Water (4303T). 1200 Pennsylvania Avenue, NW Washington, DC 20460

  • Finney DJ (1952) Probit analysis (2nd Ed). J Inst Actuaries 78(3):388–390

    Google Scholar 

  • Fraser TWK, Khezri A, Lewandowska-Sabat AM, Henry T, Ropstad E (2017) Endocrine disruptors affect larval zebrafish behavior: testing potential mechanisms and comparisons of behavioral sensitivity to alternative biomarkers. Aquat Toxicol 193:128–135. https://doi.org/10.1016/j.aquatox.2017.10.002

    Article  CAS  Google Scholar 

  • Fu L, Huang T, Wang S, Wang X, Su L, Li C, Zhao Y (2017) Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action. Chemosphere 168(Supplement C):217–222. https://doi.org/10.1016/j.chemosphere.2016.10.043

    Article  CAS  Google Scholar 

  • Gholamian F, Sheikh-Mohseni MA, Salavati-Niasari M (2011) Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper. Mater Sci Eng, C 31(8):1688–1691. https://doi.org/10.1016/j.msec.2011.07.017

    Article  CAS  Google Scholar 

  • GHS, Globally Harmonized System of Classification and Labelling of Chemicals (2007). ST/SG/AC.10/30. United Nation. www.osha.gov. Accessed 18 June 2015

  • Gojanovich AD, Bustos DM, Uhart M (2016) Differential expression and accumulation of 14-3-3 paralogs in 3T3-L1 preadipocytes and differentiated cells. Biochem Biophys Rep 7:106–112. https://doi.org/10.1016/j.bbrep.2016.05.020

    Article  Google Scholar 

  • Gupta VK, Singh AK, Singh P, Upadhyay A (2014) Electrochemical determination of perchlorate ion by polymeric membrane and coated graphite electrodes based on zinc complexes of macrocyclic ligands. Sens Actuators B Chem 199:201–209. https://doi.org/10.1016/j.snb.2014.03.078

    Article  CAS  Google Scholar 

  • Guzzella L, Gronda A, Colombo L (1997) Acute toxicity of organophosphorus insecticides to marine invertebrates. Bull Environ Contam Toxicol 59(2):313–320

    Article  CAS  Google Scholar 

  • Higgins CP, Paesani ZJ, Abbott Chalew TE, Halden RU, Hundal LS (2011) Persistence of triclocarban and triclosan in soils after land application of biosolids and bioaccumulation in Eisenia Foetida. Environ Toxicol Chem 30(3):556–563

    Article  CAS  Google Scholar 

  • Iannece P, Motta O, Tedesco R, Carotenuto M, Proto A (2013) Determination of perchlorate in bottled water from Italy. Water 5(2):767–779. https://doi.org/10.3390/w5020767

    Article  CAS  Google Scholar 

  • ISO 17512-1 (2008) Soil quality—avoidance test for determining the quality of soils and effects of chemicals on behaviour—part 1: test with earthworms (Eisenia fetida and Eisenia andrei). Genf: International Organization for Standardization

  • ISO, International Organisation for Standardization (1996) Water quality: determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea). Geneva, Switzerland

  • Kannan K, Praamsma ML, Oldi JF, Kunisue T, Sinha RK (2009) Occurrence of perchlorate in drinking water, groundwater, surface water and human saliva from India. Chemosphere 76(1):22–26

    Article  CAS  Google Scholar 

  • Kendall RJ and Smith PN (2006) Perchlorate ecotoxicology. Soc Environ Toxicol Chem

  • Koppikar SJ, Choudhari AS, Suryavanshi SA, Kumari S, Chattopadhyay S, Kaul-Ghanekar R (2010) Aqueous cinnamon extract (ACE-c) from the bark of Cinnamomum cassiacauses apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer 10(1):210. https://doi.org/10.1186/1471-2407-10-210

    Article  CAS  Google Scholar 

  • Lagarde F, Beausoleil C, Belcher SM, Belzunces LP, Emond C, Guerbet M, Rousselle C (2015) Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment. Environ Health 14:13. https://doi.org/10.1186/1476-069X-14-13

    Article  CAS  Google Scholar 

  • Landrum M, Canas JE, Coimbatore G, Cobb GP, Jackson WA, Zhang B, Anderson TA (2006) Effects of perchlorate on earthworm (Eisenia fetida) survival and reproductive success. Sci Total Environ 363(1):237–244. https://doi.org/10.1016/j.scitotenv.2005.05.020

    Article  CAS  Google Scholar 

  • Lappalainen J, Juvonen R, Nurmi J, Karp M (2001) Automated color correction method for Vibrio fischeri toxicity test. Comparison of standard and kinetic assays. Chemosphere 45(4):635–641. https://doi.org/10.1016/S0045-6535(00)00579-8

    Article  CAS  Google Scholar 

  • Lee PY, Chen CY (2009) Toxicity and quantitative structure–activity relationships of benzoic acids to Pseudokirchneriella subcapitata. J Hazard Mater 165(1):156–161. https://doi.org/10.1016/j.jhazmat.2008.09.086

    Article  CAS  Google Scholar 

  • Liu Q, Ding MH, Zhang R, Chen HX, Zhou XX, Xu HF, Chen H, Peng KL (2013) Study on mechanism of thyroid cytotoxicity of ammonium perchlorate. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 31(6):418–421

    CAS  Google Scholar 

  • Loibner AP, Szolar OH, Braun R, Hirmann D (2004) Toxicity testing of 16 priority polycyclic aromatic hydrocarbons using Lumistox®. Environ Toxicol Chem 23(3):557–564. https://doi.org/10.1897/03-59

    Article  CAS  Google Scholar 

  • Lumen A, George NI (2017) Evaluation of the risk of perchlorate exposure in a population of late-gestation pregnant women in the United States: application of probabilistic biologically-based dose response modeling. Toxicol Appl Pharmacol 322:9–14. https://doi.org/10.1016/j.taap.2017.02.021

    Article  CAS  Google Scholar 

  • Lumen A, Mattie DR, Fisher JW (2013) Evaluation of perturbations in serum thyroid hormones during human pregnancy due to dietary iodide and perchlorate exposure using a biologically based dose-response model. Toxicol Sci 133(2):320–341. https://doi.org/10.1093/toxsci/kft078

    Article  CAS  Google Scholar 

  • Maffini MV, Trasande L, Neltner TG (2016) Perchlorate and diet: human exposures, risks, and mitigation strategies. Curr Environ Health Rep 3(2):107–117. https://doi.org/10.1007/s40572-016-0090-3

    Article  CAS  Google Scholar 

  • Mariscal A, Peinado MT, Carnero-Varo M, Fernández-Crehuet JN (2003) Influence of organic solvents on the sensitivity of a bioluminescence toxicity test with Vibrio harveyi. Chemosphere 50(3):349–354. https://doi.org/10.1016/S0045-6535(02)00312-0

    Article  Google Scholar 

  • Martín A, Serrano S, Santos A, Marquina D, Vázquez C (2010) Bioluminiscencia bacteriana. Reduca (Bio) 3(5):75–86

    Google Scholar 

  • OECD, Organisation for Economic Co-operation and Development (2004) Test no. 202: daphnia sp. acute immobilisation test. OECD guidelines for the testing of chemicals. OECD Publishing, Paris

    Google Scholar 

  • OECD, Organisation for Economic Co-operation and Development (2011) Test no. 201: freshwater alga and cyanobacteria, growth inhibition test. OECD guidelines for the testing of chemicals, Section2. OECD Publishing, Paris

    Google Scholar 

  • Onorati F, Mecozzi M (2004) Effects of two diluents in the Microtox® toxicity bioassay with marine sediments. Chemosphere 54(5):679–687. https://doi.org/10.1016/j.chemosphere.2003.09.010

    Article  CAS  Google Scholar 

  • Orias F, Simon L, Perrodin Y (2015) Experimental assessment of the bioconcentration of 15 N-tamoxifen in Pseudokirchneriella subcapitata. Chemosphere 122:251–256. https://doi.org/10.1016/j.chemosphere.2014.11.070

    Article  CAS  Google Scholar 

  • Parvez S, Venkataraman C, Mukherji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32(2):265–268. https://doi.org/10.1016/j.envint.2005.08.022

    Article  CAS  Google Scholar 

  • Persoone G, Janssen C, De Coen W (2000) New microbiotests for routine toxicity screening and biomonitoring. kluwer Academic/Plenum Publishers

  • Petersen AM, Dillon D, Bernhardt RR, Torunsky R, Postlethwait JH, von Hippel FA, Loren Buck C, Cresko WA (2015) Perchlorate disrupts embryonic androgen synthesis and reproductive development in threespine stickleback without changing whole-body levels of thyroid hormone. Gen Comp Endocrinol 210:130–144. https://doi.org/10.1016/j.ygcen.2014.10.015

    Article  CAS  Google Scholar 

  • Provost P (2010) Interpretation and applicability of microRNA data to the context of Alzheimer’s and age-related diseases. Aging (Albany NY) 2(3):166–169. https://doi.org/10.18632/aging.100131

    Article  CAS  Google Scholar 

  • Qiu X-Y, Li K, Li X-Q, Li X-T (2016) The inhibitory effects of nifedipine on outward voltage-gated potassium currents in mouse neuroblastoma N2A cells. Pharmacol Rep 68 (3):631–637. https://doi.org/10.1016/j.pharep.2015.12.006

  • Ramos C, De la Torre A, Tarazona J, Munoz M (1996) Desarrollo de un ensayo de inhibición de Chlorella vulgaris utilizando un test en microplacas. Rev Toxicol 13:97–100

    CAS  Google Scholar 

  • Reshma VG, Mohanan PV (2017) Cellular interactions of zinc oxide nanoparticles with human embryonic kidney (HEK 293) cells. Colloids Surf B Biointerfaces 157:182–190. https://doi.org/10.1016/j.colsurfb.2017.05.069

    Article  CAS  Google Scholar 

  • Rico A, Sabater C, Castillo M-Á (2016) Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida. Ecotoxicol Environ Saf 127:222–229. https://doi.org/10.1016/j.ecoenv.2016.02.004

    Article  CAS  Google Scholar 

  • Rigol A, Latorre A, Lacorte S, Barceló D (2004) Bioluminescence inhibition assays for toxicity screening of wood extractives and biocides in paper mill process waters. Environ Toxicol Chem 23(2):339–347. https://doi.org/10.1897/02-632

    Article  CAS  Google Scholar 

  • Rizzo L (2011) Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res 45(15):4311–4340. https://doi.org/10.1016/j.watres.2011.05.035

    Article  CAS  Google Scholar 

  • Ronald E, Donald E (1977) Earthworms for ecology and profit: scientific earthworm farming. Bookworm Publishing Company

  • Sánchez OEA (2008) Evaluación de riesgos ambientales del uso de plaguicidas empleados en el cultivo del arroz en el Parque Natural de La Albufera de Valencia. Universitat Politècnica de València

  • Saxena P, Gupta S, Murthy R (2014) Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida—a possible mechanism. Ecotoxicol Environ Saf 100:218–225. https://doi.org/10.1016/j.ecoenv.2013.11.006

    Article  CAS  Google Scholar 

  • Schmidt F, Schnurr S, Wolf R, Braunbeck T (2012) Effects of the anti-thyroidal compound potassium-perchlorate on the thyroid system of the zebrafish. Aquat Toxicol 109:47–58

    Article  CAS  Google Scholar 

  • Schreinemachers DM, Ghio AJ, Sobus JR, Williams MA (2015) Perchlorate exposure is associated with oxidative stress and indicators of serum iron homeostasis among NHANES 2005-2008 subjects. Biomark Insights 10:9–19. https://doi.org/10.4137/BMI.S20089. eCollection 2015

  • Serrano-Nascimento C, Calil-Silveira J, Dalbosco R, Zorn TT, Nunes MT (2018) Evaluation of hypothalamus-pituitary-thyroid axis function by chronic perchlorate exposure in male rats. Environ Toxicol 33(2):209–219. https://doi.org/10.1002/tox.22509

    Article  CAS  Google Scholar 

  • Sindi RA, Harris W, Arnott G, Flaskos J, Lloyd Mills C, Hargreaves AJ (2016) Chlorpyrifos- and chlorpyrifos oxon-induced neurite retraction in pre-differentiated N2a cells is associated with transient hyperphosphorylation of neurofilament heavy chain and ERK 1/2. Toxicol Appl Pharmacol 308:20–31. https://doi.org/10.1016/j.taap.2016.08.008

    Article  CAS  Google Scholar 

  • Smith PN, Yu L, McMurry ST, Anderson TA (2004) Perchlorate in water, soil, vegetation, and rodents collected from the Las Vegas Wash, Nevada, USA. Environ Pollut 132(1):121–127. https://doi.org/10.1016/j.envpol.2004.03.017

    Article  CAS  Google Scholar 

  • Solecki R, Kortenkamp A, Bergman Å, Chahoud I, Degen GH, Dietrich D, Greim H, Håkansson H, Hass U, Husoy T, Jacobs M, Jobling S, Mantovani A, Marx-Stoelting P, Piersma A, Ritz V, Slama R, Stahlmann R, van den Berg M, Zoeller RT, Boobis AR (2017) Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement. Arch Toxicol 91(2):1001–1006. https://doi.org/10.1007/s00204-016-1866-9

    Article  CAS  Google Scholar 

  • Srinivasan A, Viraraghavan T (2009) Perchlorate: health effects and technologies for its removal from water resources. Int J Environ Res Public Health 6(4):1418–1442. https://doi.org/10.3390/ijerph6041418

    Article  CAS  Google Scholar 

  • Tatarazako N, Oda S (2007) The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology 16(1):197–203

    Article  CAS  Google Scholar 

  • Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41(5):1740–1746. https://doi.org/10.1021/es062772m

    Article  CAS  Google Scholar 

  • USFDA, U.S. Food and Drug Administration (2008) US Food and Drug Administration’s Total Diet

  • UNE-EN ISO 8692 (2012) Calidad del agua. Ensayo de inhibición del crecimiento de algas de agua dulce con algas verdes unicelulares

  • Vigliotta G, Motta O, Guarino F, Iannece P, Proto A (2010) Assessment of perchlorate-reducing bacteria in a highly polluted river. Int J Hyg Environ Health 213(6):437–443

    Article  CAS  Google Scholar 

  • Wang C, Yediler A, Lienert D, Wang Z, Kettrup A (2002) Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri. Chemosphere 46(2):339–344. https://doi.org/10.1016/S0045-6535(01)00086-8

    Article  CAS  Google Scholar 

  • Wang C, Lippincott L, Meng X (2008) Kinetics of biological perchlorate reduction and pH effect. J Hazard Mater 153(1–2):663–669. https://doi.org/10.1016/j.jhazmat.2007.09.010

    Article  CAS  Google Scholar 

  • Wang X, Jiang L, Ge L, Chen M, Yang G, Ji F, Zhong L, Guan Y, Liu X (2015) Oxidative DNA damage induced by di-(2-ethylhexyl) phthalate in HEK-293 cell line. Environ Toxicol Pharmacol 39(3):1099–1106. https://doi.org/10.1016/j.etap.2015.03.016

    Article  CAS  Google Scholar 

  • Williams M, Reddy G, Quinn M, Johnson M (2015). Wildlife toxicity assessment for chemicals of military. ISBN: 9780128004807, Elsevier 722p

  • Wolff J (1998) Perchlorate and the thyroid gland. Pharmacol Rev 50(1):89–105

    CAS  Google Scholar 

  • Ye L, You H, Yao J, Su H (2012) Water treatment technologies for perchlorate: a review. Desalination 298:1–12. https://doi.org/10.1016/j.desal.2012.05.006

    Article  CAS  Google Scholar 

  • Zamora (2006) Estudi de la toxicitat dels herbicides bensulfuron metil, propanil i cyhalofop butil en quatre espècies d’algues. Avaluació dels riscos ambientals deguts a l’ús d’aquests herbicides en zones humides mediterrànies.

  • Zhao X, Zhou P, Chen X, Li X, Ding L (2014) Perchlorate-induced oxidative stress in isolated liver mitochondria. Ecotoxicology 23(10):1846–1853. https://doi.org/10.1007/s10646-014-1312-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Ecotoxicology Laboratory at the Department of Biotechnology of the School of Agricultural Engineering and Natural Environment (ETSIAMN) of the Polytechnic University of Valencia (Spain), and to Rocío Gonzalez Moreno for her technical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Olivero-Verbel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acevedo-Barrios, R., Sabater-Marco, C. & Olivero-Verbel, J. Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environ Sci Pollut Res 25, 13697–13708 (2018). https://doi.org/10.1007/s11356-018-1565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1565-6

Keywords

Navigation