Skip to main content
Log in

Characterization, evaluation, and mechanistic insights on the adsorption of antimonite using functionalized carbon nanotubes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Floating catalytic chemical vapor deposition technique was used for synthesizing carbon nanotubes (CNTs) using ferrocene in benzene as the hydrocarbon source. The functionalization of CNTs was carried out by oxidation followed by grafting of potassium iodide (KI) and mercaptoethanol (HS(CH2)2OH) ligands to produce iodide-grafted CNTs (CNT-I) and thiol-functionalized CNTs (CNT-SH), respectively. The resulting adsorbents have been thoroughly characterized by various techniques. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) studies revealed the efficient grafting of the ligands. Further, their adsorption capacities towards antimonite have been assessed. The adsorption kinetics fitted the pseudo-second-order model for both the adsorbents. Moreover, the adsorption of Sb(III) followed Langmuir and Freundlich’s model. The maximum adsorption capacity of CNT-I and CNT-SH for Sb(III) at pH 7 was found to be 200 and 140.85 mg/g, respectively. The interference effect of various ions on the adsorption of antimonite was studied. A suitable mechanism for Sb(III) adsorption has been postulated using TEM, XRD, XPS, and FTIR. The adaptability of the adsorbents was demonstrated by the removal capacity of Sb(III) at parts per billion levels from nuclear decontamination formulation (NAC) and tap water matrix as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Biskup B, Subotic B (2005) Removal of heavy metal ions from solutions using zeolites. III Influence of sodium ion concentration in the liquid phase on the kinetics of exchange processes between cadmium ions from solution and sodium ions from zeolite A. Sep Sci Technol 39:925–940

    Article  Google Scholar 

  • Biswas BK, Inoue JI, Kawakita H, Ohto K, Inoue K (2009) Effective removal and recovery of antimony using metal-loaded saponified orange waste. J Hazard Mater 172:721–728

    Article  CAS  Google Scholar 

  • Chmielewska E, Tylus W, Drabik M, Majzlan J, Kravcak J, Williams C, Caplovicova M, Caplovic L (2017) Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal. Micropor Mesopor Mater 248:222–233

    Article  CAS  Google Scholar 

  • Chong ASM, Zhao XS (2003) Functionalization of SBA-15 with APTES and characterization of functionalized materials. J Phys Chem B 107:12650–12657

    Article  CAS  Google Scholar 

  • Dominguez L, Yue Z, Economy J, Mangun CL (2002) Design of polyvinyl alcohol mercaptylfibers for arsenite chelation. React Funct Polym 53:205–215

    Article  CAS  Google Scholar 

  • EU Directive 98/83/EC (1998) Council directive of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Union

  • Fan HT, Sun Y, Tang Q, Li WL, Sun T (2014) Selective adsorption of antimony(III) from aqueous solution by ion-imprinted organic–inorganic hybrid sorbent: kinetics, isotherms and thermodynamics. J Taiwan Inst Chem Eng 45:2640–2648

    Article  CAS  Google Scholar 

  • Fan HT, Sun W, Jiang B, Wang QJ, Li DW, Huang CC, Wang KJ, Zhang ZG, Li WX (2016) Adsorption of antimony(III) from aqueous solution by mercapto functionalized silica-supported organic-inorganic hybrid sorbent: mechanism insights. Chem Eng J 286:128–138

    Article  CAS  Google Scholar 

  • Farahmandjou M, Soflaee F (2014) Low temperature synthesis of α-Fe2O3nano-rods using simple chemical route. J Nanostruct 4:413–418

    Google Scholar 

  • Filella M, Belzile N, Chen Y-W (2002a) Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth-Sci Rev 57:125–176

    Article  CAS  Google Scholar 

  • Filella M, Belzile N, Chen YW (2002b) Antimony in the environment: a review focused on natural waters: II. Relevant solution chemistry. Earth Sci Rev 59:265–285

    Article  CAS  Google Scholar 

  • Gobbo P, Biesinger MC, Workentin MS (2013) Facile synthesis of gold nanoparticle (AuNP)- carbonnanotubes (CNT) hybrids through an interfacial Michael addition reaction. Chem Commun 49:2831–2833

    Article  CAS  Google Scholar 

  • Gupta A, Vidyarthi SR, Sankararamakrishnan N (2014) Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J Hazard Mater 274:132–144

    Article  CAS  Google Scholar 

  • Han L, Sun H, Ro KS, Sun K, Libra JA, Xing B (2017) Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresour Technol 234:77–85

    Article  CAS  Google Scholar 

  • He Z, Liu R, Liu H, Qu J (2015) Adsorption of Sb(III) and Sb(V) on freshly prepared ferric hydroxide (FeOxHy). Environ Eng Sci 32:95–102

    Article  CAS  Google Scholar 

  • Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  • Lagergren S (1898) Zurtheorie der sogenannten absorption gelosterStoffe, KungligaSvenskaVetenskapsakademiens. Hand 24:1–39

    Google Scholar 

  • Lan B, Wang Y, Wang X, Zhou X, Kang Y, Li L (2016) Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate. Chem Eng J 292:389–397

    Article  CAS  Google Scholar 

  • Leng Y, Guo W, Su S, Yi C, Xing L (2012) Removal of antimony (III) from aqueous solution by graphene as an adsorbent. Chem Eng J 211-212:406–411

    Article  CAS  Google Scholar 

  • Li X, Dou X, Li J (2012) Antimony (V) removal from water by iron-zirconium bimetal oxide: performance and mechanism. J Environ Sci 24:1197–1203

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  • Liu A, Liu J, Pan B, Zhang WX (2014) Formation of lepidocrocite from oxidation of nanoscalezerovalent iron (nZVI) in oxygenated water. RSC Adv 4:57377–57382

    Article  CAS  Google Scholar 

  • Luo J, Luo X, Crittenden J, Qu J, Bai Y, Peng Y, Li J (2015) Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from aqueous solution using carbon Nanofibers that are decorated with zirconium oxide (ZrO2).Env Sci and Technol 49:11115–111124

  • Mishra S, Dwivedi J, Kumar A, Sankararamakrishnan N (2016) Removal of antimonite (Sb(III)) and antimonate (Sb(V)) using zerovalent iron decorated functionalized carbon nanotubes. RSC Adv 6:95865–95878

    Article  CAS  Google Scholar 

  • Mohan DB, Philip A, Sunandana CS (2008) Iodization of antimony thin films: XRD, SEM and optical studies of nanostructured SbI3. Vacuum 82:561–565

    Article  CAS  Google Scholar 

  • Murapea DM, Eassaa N, Neethlinga JH, Betzb R, Coetseec E, Swartc HC, Bothaa JR, Ventera A (2012) Treatment for GaSb surfaces using a sulphur blended (NH4)2S/(NH4)2SO4 solution. Appl Surf Sci 258:6753–6758

    Article  Google Scholar 

  • Neeb KH (1997) The radiochemistry of nuclear power plants with light water reactors. Walter de Gruyter& Co., Berlin

    Book  Google Scholar 

  • Nishad PA, Bhaskarapillai A, Velmurugan S (2014) Nano-titania-crosslinked chitosan compositeas a superior sorbent for antimony (III) and (V). Carbohydr Polym 108:169–175

    Article  CAS  Google Scholar 

  • Pan Y, Chen W, Lu S, Zhang Y (2005) Novel aqueous soluble cobalt phthalocyanine: synthesis and catalytic activity on oxidation of 2-mercaptoethanol. Dyes Pigments 66:115–121

    Article  CAS  Google Scholar 

  • Qi Z, Joshi TP, Liu R, Liu H, Qu J (2017) Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. J Hazard Mater 329:193–204

    Article  CAS  Google Scholar 

  • Resongles E, Casiot C, Elbaz-Poulichet F, Freydier R, Bruneel O, Piot C, Desoeuvre A (2013) Fate of Sb(V) and Sb(III) species along a gradient of pH and oxygen concentration in the Carnoules mine waters (southern France). Evnviron Sci Process Impacts 15:1536–1544

    Article  CAS  Google Scholar 

  • Rufus AL, Velmurugan S, Sathyaseelan VS, Narasimhan SV (2004) Comparative studies of nitriloacetic acid (NTA) and EDTA as formulation constituents for chemical decontamination of primary coolant systems of nuclear power plants. Prog Nucl Energy 44:13–31

    Article  CAS  Google Scholar 

  • Sadegh H, Shahryari-ghoshekandi R, Kazemi M (2014) Study in synthesis and characterization of carbon nanotubes, decorated by magnetic iron oxide nanoparticles. Int Nano Lett 3:1–7

    Google Scholar 

  • Salam MA, Mohamed RM (2013) Removal of antimony (III) by multi-walled carbon nanotubes from model solution and environmental samples. Chem Eng Res Des 91:1352–1360

    Article  CAS  Google Scholar 

  • Sankararamakrishnan N, Chauhan D, Dwivedi J (2016) Synthesis of functionalized carbon nanotubes by floating catalytic chemical vapor deposition method and their sorption behavior toward arsenic. Chem Eng J 284:599–608

    Article  CAS  Google Scholar 

  • Sari A, Citak D, Tuzen M (2010) Equilibrium, thermodynamic and kinetic studies on adsorption of Sb (III) from aqueous solution using low-cost natural diatomite. Chem Eng J 162:521–527

    Article  CAS  Google Scholar 

  • Shan C, Ma Z, Tong M (2014) Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles. J Hazard Mater 268:229–236

    Article  CAS  Google Scholar 

  • Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52

    Article  CAS  Google Scholar 

  • Subrahmanyam KS, Malliakas CD, Islam SM, Sarma D, Wu J, Kanatzidis MG (2016) High-surface-area antimony sulfide chalcogels. Chem Mater 28:7744–7749

    Article  CAS  Google Scholar 

  • Sundar S, Chakravarty J (2010) Antimony toxicity. Int J Environ Res Public Health 7:4267–4277

    Article  CAS  Google Scholar 

  • Taha MR, Ahmad K, Aziz AA, Chik Z (2009) Geoenvironmental aspects of tropical residual soils. Tropical residual soils engineering. A.A. Balkema Publishers, London, pp 213–229

    Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. Geneva

  • Wu FC, Tseng RL, Juang RS (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153:1–8

    Article  CAS  Google Scholar 

  • Xi J, He M, Lin C (2011) Adsorption of antimony(III) and antimony(V) on bentonite: kinetics, thermodynamics and anion competition. Microchem J 97:85–91

    Article  CAS  Google Scholar 

  • Xu W, Wang H, Liu R, Zhao X, Qu J (2011) The mechanism of antimony(III) removal and its reactions on the surfaces of Fe-Mn binary oxide. J Colloid Interface Sci 363:320–326

    Article  CAS  Google Scholar 

  • Xu C, Zhang B, Zhu L, Lin S, Sun X, Jiang Z, Tratnyek PG (2016) Sequestration of antimonite by zerovalent iron: using weak magnetic field effects to enhance performance and characterize reaction mechanisms. Environ Sci Technol 50:1483–1491

    Article  CAS  Google Scholar 

  • Yang B, Xue DJ, Leng M, Zhong J, Wang L, Song H, Zhou Y, Tang J (2015a) Hydrazine solution processed Sb2S3, Sb2Se3and Sb2(S1−xSex)3 film: molecular precursor identification, film fabrication and band gap tuning. Sci Rep 5:10978

    Article  CAS  Google Scholar 

  • Yang X, Shi Z, Yuan M, Liu LS (2015b) Adsorption of trivalent antimony from aqueous solution using graphene oxide: kinetic and thermodynamic studies. J Chem Eng Data 60:806–813

    Article  CAS  Google Scholar 

  • Yu T, Zeng C, Ye M, Shao Y (2013) The adsorption of Sb(III) in aqueous solution by Fe2O3-modified carbon nanotubes. Water Sci Technol 68:658–664

    Article  CAS  Google Scholar 

  • Yu TC, Wang XH, Li C (2014) Removal of antimony by FeCl3-modified granular activated carbon in aqueous solution. J Environ Eng 140:A4014001–A4014006

    Article  Google Scholar 

  • Zhao X, Dou X, Mohan D, Pittman CU, Ok YS, Jin X (2014) Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron. Chem Eng J 247:250–257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Board of Research in Nuclear Sciences, Department of Atomic Energy, Mumbai, India (Ref. No. 2013/36/57-BRNS/2482). Thematic Unit of Excellence on soft nanofabrication and Advance imaging centra at IIT Kanpur is acknowledged for SEM and TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shruti Mishra.

Additional information

Responsible editor: Guilherme L. Dotto

Electronic supplementary material

ESM 1

(DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Sankararamakrishnan, N. Characterization, evaluation, and mechanistic insights on the adsorption of antimonite using functionalized carbon nanotubes. Environ Sci Pollut Res 25, 12686–12701 (2018). https://doi.org/10.1007/s11356-018-1347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1347-1

Keywords

Navigation