Skip to main content

Advertisement

Log in

Chemical composition and antifungal activity of plant extracts traditionally used in organic and biodynamic farming

  • Chemistry, Activity and Impact of Plant Biocontrol products
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Five plant extracts traditionally used in organic and biodynamic farming for pest control and antifungal (downy mildew) disease management were selected after a farmer survey and analyzed for their chemical composition in LC-PDA-MS-MS and using adapted analytical method from food chemistry for determination of class of component (e.g., protein, sugar, lipids…). Their antifungal activity against Penicillium expansum, Botrytis cinerea, Botrytis allii, brown rot causing agents (Monilinia laxa and Monilinia fructigena), and grape downy mildew (Plasmopara viticola) was examined in vitro. White willow (Salix alba) and absinthe (Artemisia absinthium) ethanolic extracts were found to be the most effective in particular against Plasmopara viticola, with a total inhibition of spores germination when applied at 1000 mg/L. These extracts also showed a relatively low toxicity during preliminary ecotoxicological assays on Daphnia pulex. Extract from the bark of white willow contained some flavonoids, especially flavanones (eriodyctiol and derivates) and flavanols (catechins and derivates), as major compounds, whereas absinthe extract was rich in O-methylated flavanols and hydroxycinnamic acids. Thujone content in this extract was also determined by external calibration in GC-MS analysis, and its value was 0.004% dry extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnolet S, Wiese S, Verpoorte R, Staerk D (2012) Comprehensive analysis of commercial willow bark extracts by new technology platform: combined use of metabolomics, high-performance liquid chromatography—solid-phase extraction—nuclear magnetic resonance spectroscopy and high-resolution radical scavenging assay. J Chromatogr A 1262:130–137. https://doi.org/10.1016/j.chroma.2012.09.013

    Article  CAS  Google Scholar 

  • Association Of Analytic Chemistry (2005) AOAC Official Method 985.29 (A-D) In: Official Methods of Analysis of AOAC international, 18th edn. Gaithersburg

  • Bélanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology 93(4):402–412. https://doi.org/10.1094/PHYTO.2003.93.4.402

    Article  Google Scholar 

  • Blagojević P, Radulović N, Palić R, Stojanović G (2006) Chemical composition of the essential oils of Serbian wild-growing Artemisia absinthium and Artemisia vulgaris. J Agric Food Chem 54(13):4780–4789. https://doi.org/10.1021/jf060123o

    Article  CAS  Google Scholar 

  • Bruneton J (1999) Pharmacognosie, Phytochimie plantes médicinales, Lavoisier Tec & Doc, 3rd edn, Paris

  • Cai K, Gao D, Luo S, Zeng R, Yang J, Zhu X (2008) Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol Plant 134(2):324–333. https://doi.org/10.1111/j.1399-3054.2008.01140.x

    Article  CAS  Google Scholar 

  • Carbonara T, Pascale R, Argentieri MP, Papadia P, Fanizzi FP, Villanova L, Avato P (2012) Phytochemical analysis of a herbal tea from Artemisia annua L. J Pharm Biomed Anal 62:79–86. https://doi.org/10.1016/j.jpba.2012.01.015

    Article  CAS  Google Scholar 

  • Carnat A, Heitz A, Fraisse D, Carnat AP, Lamaison JL (2000) Major dicaffeoylquinic acids from Artemisia vulgaris. Fitoterapia 71(5):587–589. https://doi.org/10.1016/S0367-326X(00)00163-5

    Article  CAS  Google Scholar 

  • Chen M, Zhai L, Arendrup M (2015) In vitro activity of 23 tea extractions and epigallocatechin gallate against Candida species. Med Mycol 53:194–198

    Article  CAS  Google Scholar 

  • Cherif M, Asselin A, Belanger RR (1994) Defense responses induced by soluble silicon in cuncumber roots infected by Pythium spp. Mol Plant Pathol 84:236–242

    CAS  Google Scholar 

  • Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) Hierarchical scheme for LC-MS identification of chlorogenic acids. J Agric Food Chem 51(10):2900–2911. https://doi.org/10.1021/jf026187q

    Article  CAS  Google Scholar 

  • Commision Services (2007) Working document of the Commission Services - DRAFT Comparison between EU and GHS Criteria Human Health and Environment

  • Cook R, Hennell JR, Lee S, Khoo CS, Carles MC, Higgins VJ, Govindaraghavan S, Sucher NJ (2013) The Saccharomyces cerevisiae transcriptome as a mirror of phytochemical variation in complex extracts of Equisetum arvense from America, China, Europe and India. BMC Genomics 14(1):445. https://doi.org/10.1186/1471-2164-14-445

    Article  CAS  Google Scholar 

  • Couteux A, Lejeune A (2015) Index phytosanitaire. ACTA, Paris

    Google Scholar 

  • Dane Y, Mouhouche F, Canela-Garayoa R, Delpino-Rius A (2016) Phytochemical analysis of methanolic extracts from Artemisia absinthium L. 1753 (Asteraceae), Juniperus phoenicea L., and Tetraclinis articulata (Vahl) Mast, 1892 (Cupressaceae) and evaluation of their biological activtiy for stored grain protection. Arab J Sci Eng 41(6):247–2158. https://doi.org/10.1007/s13369-015-1977-2

    Article  CAS  Google Scholar 

  • Du Q, Jerz G, Winterhalter P (2004) Preparation of three flavonoids from the bark of Salix alba by high-speed countercurrent chromatographic separation. J Liq Chromatogr Relat Technol 27(20):3257–3264. https://doi.org/10.1081/JLC-200034917

    Article  CAS  Google Scholar 

  • Esatbeyoglu T, Winterhalter P (2010) Preparation of dimeric Procyanidins B1, B2, B5, and B7 from a polymeric procyanidin fraction of black chokeberry (Aronia melanocarpa). J Agric Food Chem 58(8):5147–5153. https://doi.org/10.1021/jf904354n

    Article  CAS  Google Scholar 

  • Francescato LN, Debenedetti SL, Schwanz TG, Bassani VL, Henriques AT (2013) Identification of phenolic compounds in Equisetum giganteum by LC–ESI-MS/MS and a new approach to total flavonoid quantification. Talanta 105:192–203. https://doi.org/10.1016/j.talanta.2012.11.072

    Article  CAS  Google Scholar 

  • Frey S, Carver TLW (1998) Induction of systemic resistance in pea to pea powdery mildew by exogenous application of salicylic acid. J Phytopathol 146:239–245

    Article  CAS  Google Scholar 

  • Garcia D, Garcia-Cela E, Ramos AJ, Sanchis V, Marín S (2011) Mould growth and mycotoxin production as affected by Equisetum arvense and Stevia rebaudiana extracts. Food Control 22(8):1378–1384. https://doi.org/10.1016/j.foodcont.2011.02.016

    Article  CAS  Google Scholar 

  • Garcia D, Ramos AJ, Sanchis V, Marín S (2013) Equisetum arvense hydro-alcoholic extract: phenolic composition and antifungal and antimycotoxigenic effect against Aspergillus flavus and Fusarium verticillioides in stored maize: Equisetum arvense hydro-alcoholic extract. J Sci Food Agric 93(9):2248–2253. https://doi.org/10.1002/jsfa.6033

    Article  CAS  Google Scholar 

  • Gonzalez-Coloma A, Bailen M, Diaz CE, Fraga BM, Martínez-Díaz R, Zuñiga GE, Contreras RA, Cabrera R, Burillo J (2012) Major components of Spanish cultivated Artemisia absinthium populations: antifeedant, antiparasitic, and antioxidant effects. Ind Crop Prod 37(1):401–407. https://doi.org/10.1016/j.indcrop.2011.12.025

    Article  CAS  Google Scholar 

  • Guével MH, Menzies JG, Bélanger RR (2007) Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur J Plant Pathol 119(4):429–436. https://doi.org/10.1007/s10658-007-9181-1

    Article  CAS  Google Scholar 

  • Han J, Ye M, Qiao X, Xu M, Wang B, Guo DA (2008) Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J Pharm Biomed Anal 47(3):516–525. https://doi.org/10.1016/j.jpba.2008.02.013

    Article  CAS  Google Scholar 

  • Hold KM, Sirisoma NS, Ikeda T, Narahashi T, Casida JE (2000) a-Thujone (the active component of absinthe): g-aminobutyric acid type A receptor modulation and metabolic detoxification. Proc Natl Acad Sci 97(8):3826–3831. https://doi.org/10.1073/pnas.070042397

    Article  CAS  Google Scholar 

  • International Organization For Standardization (1973) ISO 1443. Meat and meat products. Determination of total fat content. In: International organization for standardization, Geneva

  • Ivanescu B, Vlase L, Corciova A, Lazar MI (2010) HPLC-DAD-MS study of polyphenols from Artemisia absinthium, A. annua, and A. vulgaris. Chem Nat Compd 46(3):468–470. https://doi.org/10.1007/s10600-010-9648-8

    Article  CAS  Google Scholar 

  • Julio L, Burillo J, Giménez C, Cabrera R, Díaz C, Sanz J, González-Coloma A (2015) Chemical and biocidal characterization of two cultivated Artemisia absinthium populations with different domestication levels. Ind Crop Prod 76:787–792. https://doi.org/10.1016/j.indcrop.2015.07.041

    Article  CAS  Google Scholar 

  • Kammerer B, Kahlich R, Biegert C, Gleiter CH, Heide L (2005) HPLC-MS/MS analysis of willow bark extracts contained in pharmaceutical preparations. Phytochem Anal 16(6):470–478. https://doi.org/10.1002/pca.873

    Article  CAS  Google Scholar 

  • Lachenmeier DW, Nathan-Maister D, Breaux TA, Sohnius EM, Schoeberl K, Kuballa T (2008) Chemical composition of vintage preban absinthe with special reference to thujone, fenchone, pinocamphone, methanol, copper, and antimony concentrations. J Agric Food Chem 56(9):3073–3081. https://doi.org/10.1021/jf703568f

    Article  CAS  Google Scholar 

  • Lee SJ, Chung HY, Maier CGA, Wood AR, Dixon RA, Mabry TJ (1998) Estrogenic flavonoids from Artemisia vulgaris L. J Agric Food Chem 46(8):3325–3329. https://doi.org/10.1021/jf9801264

    Article  CAS  Google Scholar 

  • Lopes-Lutz D, Alviano DS, Alviano CS, Kolodziejczyk PP (2008) Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 69(8):1732–1738. https://doi.org/10.1016/j.phytochem.2008.02.014

    Article  CAS  Google Scholar 

  • Melguizo-Melguizo D, Diaz-de-Cerio E, Quirantes-Piné R, Švarc-Gajić J, Segura-Carretero A (2014) The potential of Artemisia vulgaris leaves as a source of antioxidant phenolic compounds. J Funct Foods 10:192–200. https://doi.org/10.1016/j.jff.2014.05.019

    Article  CAS  Google Scholar 

  • Nakatani N, Kayano S, Kikuzaki H, Sumino K, Katagiri K, Mitani T (2000) Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus d omestica L.) J Agric Food Chem 48(11):5512–5516. https://doi.org/10.1021/jf000422s

    Article  CAS  Google Scholar 

  • OECD (2004) OECD n° 202: daphnia sp., acute immobilisation test and reproduction, test organisation for economic co-operation and development, Paris

  • Pobłocka-Olech L, van Nederkassel AM, Vander Heyden Y, Krauze-Baranowska M, Glód D, Baczek T (2007) Chromatographic analysis of salicylic compounds in different species of the genus Salix. J Sep Sci 30(17):2958–2966. https://doi.org/10.1002/jssc.200700137

    Article  CAS  Google Scholar 

  • Suárez-Quiroz ML, Alonso Campos A, Valerio Alfaro G, González-Ríos O, Villeneuve P, Figueroa-Espinoza MC (2015) Anti-Aspergillus activity of green coffee 5-O-caffeoyl quinic acid and its alkyl esters. Mic Pathogen 61-62:51–56

    Article  Google Scholar 

  • Rodrigues FÁ, Benhamou N, Datnoff LE, Jones JB, Bélanger RR (2003) Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93(5):535–546. https://doi.org/10.1094/PHYTO.2003.93.5.535

    Article  CAS  Google Scholar 

  • Slingleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    Google Scholar 

  • Tala V, Candida da Silva V, Rodrigues C, Nkengfack A, Campaner dos Santos L, Vilegas W (2013) Characterization of Proanthocyanidins from Parkia biglobosa (Jacq.) G. Don. (Fabaceae) by Flow Injection Analysis — Electrospray Ionization Ion Trap Tandem Mass Spectrometry and Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Molecules 18:2803–2820. https://doi.org/10.3390/molecules18032803

    Article  CAS  Google Scholar 

  • Yamaji K, Ichihara Y (2012) The role of catechin and epicatechin in chemical defense against damping-off fungi ofcurrent-year Fagus crenata seedlings in natural forest. For Path 42:1–7. https://doi.org/10.1111/j.1439-0329.2010.00709.x

    Article  Google Scholar 

Download references

Acknowledgements

The spectroscopic experiments have been performed using the “Biodiversité et Biotechnologies Marines” (Bio2Mar) facilities at the University of Perpignan.

This project was support by Perpignan University Foundation and French Ministry in charge of Agriculture through the CASDAR project “4P” (Protection des Plantes Par les Plantes).

The authors gratefully thank Jeanine ALMANY for providing English language editing (as well as constructing comments) which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Andreu.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreu, V., Levert, A., Amiot, A. et al. Chemical composition and antifungal activity of plant extracts traditionally used in organic and biodynamic farming. Environ Sci Pollut Res 25, 29971–29982 (2018). https://doi.org/10.1007/s11356-018-1320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1320-z

Keywords

Navigation