Skip to main content
Log in

Assessment of atrazine toxicity to the estuarine phytoplankter, Dunaliella tertiolecta (Chlorophyta), under varying nutrient conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Anthropogenic inputs of chemical environmental contaminants are frequently associated with developing harmful algal blooms, but little is known about how estuarine phytoplankton assemblages respond to multiple, co-occurring chemical stressors in chronically disturbed habitats. The goals of this research were to establish a robust protocol for testing the effects of atrazine on estuarine phytoplankton, and then to use that protocol to compare the effects of atrazine exposure with and without nutrient enrichment on a cosmopolitan estuarine/marine alga, Dunaliella tertiolecta (Chlorophyta). Atrazine sensitivity in nutrient-replete media (96-h growth inhibition \( \overline{x} \)) was 159.16 μg l−1, but sensitivity was influenced by exposure duration, and inhibitory effects of herbicide on algal growth decreased under imbalanced nutrient regimes and low nitrogen and phosphorus supplies. These findings advance knowledge about how nutrient regimes and herbicides interact to control estuarine phytoplankton population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA (American Public Health Association) (1995) Standard methods for the examination for water and wastewater, 19th edn. Byrd Prepess Springfield, Washington, DC

    Google Scholar 

  • ASTM (American Society for Testing and Materials) (1996) Standard guide for conducting static 96-h toxicity tests with microalgae vol 11.05. ASTM, West Conshohocken

    Google Scholar 

  • Behra R, Genoni G, Joseph A (1999) Effect of atrazine on growth, photosynthesis, and between-strain variability in Scenedesmus subspicatus (Chlorophyceae). Arch Environ Contam Toxicol 37:36–41

    Article  CAS  Google Scholar 

  • Bérard A, Leboulanger C, Pelte T (1999) Tolerance of Oscillatoria limnetica Lemmermann to atrazine in natural phytoplankton populations and in pure culture: influence of season and temperature. Arch Environ Contam Toxicol 37:472–479

    Article  Google Scholar 

  • Blaise C, Ferard JF, Vasseur P (1997) Microplate toxicity tests with microalgae: a review. In: Wells P, Lee K, Blaise C (eds) Microscale aquatic toxicology—advances, techniques and practice. CRC-Lewis Press, Boca Raton, pp 269–288

    Google Scholar 

  • Blanck H, Wallin G, Wangberg SA (1984) Species-dependent variation in algal sensitivity to chemical compounds. Ecotoxicol Environ Saf 8:339–351

    Article  CAS  Google Scholar 

  • Bricker SB, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2008) Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae 8:21–32

    Article  CAS  Google Scholar 

  • Burkholder JM, Glibert PM (2013) Eutrophication and oligotrophication. In: Levin S (ed) Encyclopedia of biodiversity, vol 3, 2nd edn. Academic Press, Waltham, pp 347–371

    Chapter  Google Scholar 

  • Carder JP, Hoagland KD (1998) Combined effects of alachlor and atrazine on benthic algal communities in artificial streams. Environ Toxicol Chem 17:1415–1420

    Article  CAS  Google Scholar 

  • Chalifour A, Juneau P (2011) Temperature-dependent sensitivity of growth and photosynthesis of Scenedesmus obliquus, Navicula pelliculosa and two strains of Microcystis aeruginosa to the herbicide atrazine. Aquat Toxicol 103:9–17

    Article  CAS  Google Scholar 

  • Chao M-R, Chen C-Y (2001) Discrepancies between different response parameters in batch and continuous algal toxicity tests. J Hazard Mater 82:129–136

    Article  CAS  Google Scholar 

  • Cheung AY, Bogorad L, Van Montagu M, Schell J (1988) Relocating a gene for herbicide tolerance: a chloroplast gene is converted into a nuclear gene. Proc Natl Acad Sci USA 85:391–395

    Article  CAS  Google Scholar 

  • Choi CJ, Berges JA, Young EB (2012) Rapid effects of diverse toxic water pollutants on chlorophyll a fluorescence: variable responses among freshwater microalgae. Water Res 46:2615–2262

    Article  CAS  Google Scholar 

  • Cook AM, Hutter R (1981) s-triazines as nitrogen sources for bacteria. J Agric Food Chem 29:1135–1143

    Article  CAS  Google Scholar 

  • DeLorenzo ME (2009) Utility of Dunaliella in ecotoxicity testing. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The alga Dunaliella. Science Publishers, Enfield, pp 495–512

    Chapter  Google Scholar 

  • DeLorenzo ME, Serrano L (2003) Individual and mixture toxicity of three pesticides; atrazine, chlorpyrifos, and chlorothalonil to the marine phytoplankton species Dunaliella tertiolecta. J Environ Sci Health B 38:529–538

    Article  CAS  Google Scholar 

  • DeLorenzo ME, Serrano L (2006) Mixture toxicity of the antifouling compound irgarol to the marine phytoplankton species Dunaliella tertiolecta. J Environ Sci Health B 41:1349–1360

    Article  CAS  Google Scholar 

  • DeLorenzo M, Lauth J, Pennington P, Scott G, Ross P (1999) Atrazine effects on the microbial food web in tidal creek mesocosms. Aquat Toxicol 46:241–251

    Article  CAS  Google Scholar 

  • DeLorenzo ME, Scott GI, Ross PE (2001) Toxicity of pesticides to aquatic microorganisms: a review. Environ Toxicol Chem 20:84–98

    Article  CAS  Google Scholar 

  • DeLorenzo ME, Leatherbury M, Weiner JA, Lewitus AJ, Fulton MH (2004) Physiological factors contributing to the species-specific sensitivity of four estuarine microalgal species exposed to the herbicide atrazine. Aquat Ecosyst Health Manag 7:137–146

    Article  CAS  Google Scholar 

  • deNoyelles F, Kettle WD, Sinn DE (1982) The responses of plankton communities in experimental ponds to atrazine, the most heavily used pesticide in the United States. Ecology 63:1285–1293

    Article  CAS  Google Scholar 

  • Efron B (1982) The jackknife, the bootstrap and other resampling plans. Conference Board of the Mathematical Sciences - National Science Foundation Regional Conference Series in Applied Mathematices Series, vol 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

    Google Scholar 

  • Eisentraeger A, Dott W, Klein J, Hahn S (2003) Comparative studies on algal toxicity testing using fluorometric microplate and Erlenmeyer flask growth-inhibition assays. Ecotoxicol Environ Saf 54:346–354

    Article  CAS  Google Scholar 

  • Eisler R (1989) Atrazine hazards to fish, wildlife, and invertebrates: a synoptic review. Biological Report 85(1.8), Contaminant Hazard Reviews Report No. 18. Laurel: US Fish and Wildlife Service

  • Fahl GM, Kreft L, Altenburger R, Faust M, Boedeker W, Grimme LH (1995) pH-dependent sorption, bioconcentration and algal toxicity of sulfonylurea herbicides. Aquat Toxicol 31:175–187

    Article  CAS  Google Scholar 

  • Fairchild JF, Ruessler DS, Carlson AR (1998) Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. Environ Toxicol Chem 17:1830–1834

    Article  CAS  Google Scholar 

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233

    Article  CAS  Google Scholar 

  • Flood SL (2017) Ecotoxicology of estuarine phytoplankton growth and toxicity in response to atrazine exposures. Dissertation, North Carolina State University

  • Forney DR, Davis DE (1981) Effects of low concentrations of herbicides on submersed aquatic plants. Weed Sci 29:677–685

    CAS  Google Scholar 

  • Gaggi C, Duccini M, Bacci E, Sbrilli G, Bucci M, Naby A (1995) Toxicity and hazard ranking of s-triazine herbicides using microtox® two green algal species and a marine crustacean. Environ Toxicol Chem 14:1065–1069

    CAS  Google Scholar 

  • Gascón J, Oubiña A, Barceló D (1997) Detection of endocrine-disrupting pesticides by enzyme-linked immunosorbent assay (ELISA): application to atrazine. Trends Anal Chem 16:554–562

    Article  Google Scholar 

  • Geis SW, Fleming KL, Korthals ET, Searle G, Reynolds L, Karner DA (2000) Modifications to the algal growth inhibition test for use as a regulatory assay. Environ Toxicol Chem 19:36–41

    Article  CAS  Google Scholar 

  • Giddings JM (2005) Atrazine in North American surface waters : a probabilistic aquatic ecological risk assessment. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola 432 p

    Google Scholar 

  • Gilliom RJ, Barbash JE, Crawford CG, Hamilton PA, Martin JD, Nakagaki N, Nowell LH, Scott JC, Stackelberg PE, Thelin GP, Wolock DM (2006) Pesticides in the nation’s streams and ground water, 1992–2001, vol 1291. U.S. Geological Survey Circular, Reston, p 1291 172 p

    Google Scholar 

  • Glibert PM, Fullerton D, Burkholder JM, Cornwell JC, Kana TM (2011) Ecological stoichiometry, biogeochemical cycling, invasive species, and aquatic food webs: San Francisco Estuary and comparative systems. Rev Fish Sci 19:358–417

    Article  Google Scholar 

  • Glotfelty D, Taylor A, Isensee A, Jersey J, Glenn S (1984) Atrazine and simazine movement to Wye River estuary. J Environ Qual 13:115–121

    Article  CAS  Google Scholar 

  • Graymore M, Stagnitti F, Allinson G (2001) Impacts of atrazine in aquatic ecosystems. Environ Int 26:483–495

    Article  CAS  Google Scholar 

  • Guasch H, Sabater S (1998) Light history influences the sensitivity to atrazine in periphytic algae. J Phycol 34:233–241

    Article  CAS  Google Scholar 

  • Guillard RR (1973) Division rates. In: Stein JR (ed) Handbook of phycological methods—culture methods and growth measurements. Cambridge University Press, Cambridge, pp 239–311

    Google Scholar 

  • Guillard RR, Hargraves P (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236

    Article  Google Scholar 

  • Gustavson K, Wängberg S-Å (1995) Tolerance induction and succession in microalgae communities exposed to copper and atrazine. Aquat Toxicol 32:283–302

    Article  CAS  Google Scholar 

  • Hamala JA, Kollig HP (1985) The effects of atrazine on periphyton communities in controlled laboratory ecosystems. Chemosphere 14:1391–1408

    Article  CAS  Google Scholar 

  • Hatfield PM, Guikema JA, John JBS, Gendel SM (1989) Characterization of the adaptation response of Anacystis nidulans to growth in the presence of sublethal doses of herbicide. Curr Microbiol 18:369–374

    Article  CAS  Google Scholar 

  • Hewitt M, Ellison C, Enoch S, Madden J, Cronin M (2010) Integrating (Q) SAR models, expert systems and read-across approaches for the prediction of developmental toxicity. Reprod Toxicol 30:147–160

    Article  CAS  Google Scholar 

  • Hickey C, Blaise C, Costan G (1991) Microtesting appraisal of ATP and cell recovery toxicity end points after acute exposure of Selenastrum capricornutum to selected chemicals. Environ Toxicol Water 6:383–403

    Article  CAS  Google Scholar 

  • Howard P (1991) Handbook of environmental fate and exposure data for organic chemicals, vol 3. Lewis, Chelsea

    Google Scholar 

  • Huber W (1993) Ecotoxicological relevance of atrazine in aquatic systems. Environ Toxicol Chem 12:1865–1881

    Article  CAS  Google Scholar 

  • Hylland K, Vethaak AD (2011) Impact of contaminants on pelagic ecosystems. Chapter 10 In: Sánchez-Bayo F, van den Brink PJ, Mann RM (eds) Ecological impacts of toxic chemicals. Bentham Science Publishers Ltd, Sharjah, pp 271–287

    Google Scholar 

  • ISO 10253 (1995) Water quality––marine algal growth inhibition test with Skeletonema costatum and Phaeodactylum tricornutum. International Organization for Standardization, Geneve, Switzerland

    Google Scholar 

  • Jablonowski ND, Schäffer A, Burauel P (2011) Still present after all these years: persistence plus potential toxicity raise questions about the use of atrazine. Environ Sci Pollut Res 18:328–331

    Article  CAS  Google Scholar 

  • Janssen CR, Heijerick DG (2003) Algal toxicity tests for environmental risk assessments of metals. Rev Environ Contam Toxicol 178:23–52

    CAS  Google Scholar 

  • Jones T, Kemp W, Stevenson J, Means J (1982) Degradation of atrazine in estuarine water/sediment systems and soils. Environ Qual 11:632–638

    Article  CAS  Google Scholar 

  • Kasai F, Takamura N, Hatakeyama S (1993) Effects of simetryne on growth of various freshwater algal taxa. Environ Pollut 79:77–83

    Article  CAS  Google Scholar 

  • Koenig F (1990) Shade adaptation in cyanobacteria. Photosynth Res 26:29–37

    CAS  Google Scholar 

  • Lehotay SJ, Harman-Fetcho JA, McConnell LL (1998) Agricultural pesticide residues in oysters and water from two Chesapeake Bay tributaries. Mar Pollut Bull 37:32–44

    Article  CAS  Google Scholar 

  • Lewis MA (1990a) Are laboratory-derived toxicity data for freshwater algae worth the effort? Environ Toxicol Chem 9:1279–1284

    Article  CAS  Google Scholar 

  • Lewis MA (1990b) Chronic toxicities of surfactants and detergent builders to algae: a review and risk assessment. Ecotoxicol Environ Saf 20:123–140

    Article  CAS  Google Scholar 

  • Lewis MA (1995) Use of freshwater plants for phytotoxicity testing: a review. Environ Pollut 87:319–336

    Article  CAS  Google Scholar 

  • Lockert C, Hoagland KD, Siegfried BD (2006) Comparative sensitivity of freshwater algae to atrazine. Bull Environ Contam Toxicol 76:73–79

    Article  CAS  Google Scholar 

  • Lytle JS, Lytle TF (2001) Use of plants for toxicity assessment of estuarine ecosystems. Environ Toxicol Chem 20:68–83

    Article  CAS  Google Scholar 

  • McCarthy AM, Bales JD, Cope WG, Shea D (2007) Modeling pesticide fate in a small tidal estuary. Ecol Model 200:149–159

    Article  Google Scholar 

  • McLachlan J (1960) The culture of Dunaliella tertiolecta Butcher—a euryhaline organism. Can J Microbiol 6:367–379

    Article  CAS  Google Scholar 

  • Mohan B, Hosetti B (1999) Aquatic plants for toxicity assessment. Environ Res 81:259–274

    Article  CAS  Google Scholar 

  • Moreland D, Hill K (1962) Interference of herbicides with the Hill reaction of isolated chloroplasts. Weeds 10:229–236

    Article  CAS  Google Scholar 

  • Norberg-King TJ (1993) A linear interpolation method for sublethal toxicity: the inhibition concentration (ICp) approach. National Effluent Toxicity Assessment Center Technical Report, vol 39. Environmental Protection Agency, Environmental Research Laboratory, Duluth, pp 03–93

    Google Scholar 

  • Nyholm N (1985) Response variable in algal growth inhibition tests—biomass or growth rate? Water Res 19:273–279

    Article  Google Scholar 

  • Nyholm N (1990) Expression of results from growth inhibition toxicity tests with algae. Arch Environ Contam Toxicol 19:518–522

    Article  CAS  Google Scholar 

  • Nyholm N, Källqvist T (1989) Methods for growth inhibition toxicity tests with freshwater algae. Environ Toxicol Chem 8:689–703

    Article  CAS  Google Scholar 

  • Nyholm N, Lyngby JE (1988) Algal bioassays in eutrophication research—a discussion in the framework of a mathematical analysis. Water Res 22:1293–1300

    Article  CAS  Google Scholar 

  • OECD (Organization for Economic Co-operation Development) (1998) Alga, growth inhibition test. OCED Guidelines for Testing of Chemicals. OECD, Paris

    Google Scholar 

  • Pannard A, Le Rouzic B, Binet F (2009) Response of phytoplankton community to low-dose atrazine exposure combined with phosphorus fluctuations. Arch Environ Contam Toxicol 57:50–59

    Article  CAS  Google Scholar 

  • Pate AS, De Souza AE, Farrow DRG (1992) Agricultural pesticide use in coastal areas: a national summary. National Oceanic and Atmospheric Administration, Rockville

    Google Scholar 

  • Patlewicz G, Ball N, Booth ED, Hulzebos E, Zvinavashe E, Hennes C (2013) Use of category approaches, read-across and (Q) SAR: general considerations. Regul Toxicol Pharmacol 67:1–12

    Article  Google Scholar 

  • Pennington PL, Scott GI (2001) Toxicity of atrazine to the estuarine phytoplankter Pavlova sp. (Prymnesiophyceae): increased sensitivity after long-term, low-level population exposure. Environ Toxicol Chem 20:2237–2242

    Article  CAS  Google Scholar 

  • Pennington PL, Daugomah JW, Colbert AC, Fulton MH, Key PB, Thompson BC, Strozier ED, Scott GI (2001) Analysis of pesticide runoff from mid-Texas estuaries and risk assessment implications for marine phytoplankton. J Environ Sci Health B 36:1–14

    Article  CAS  Google Scholar 

  • Pereira WE, Rostad CE (1990) Occurrence, distributions, and transport of herbicides and their degradation products in the lower Mississippi River and its tributaries. Environ Sci Technol 24:1400–1406

    Article  CAS  Google Scholar 

  • Peterson HG, Healey FP, Wagemann R (1984) Metal toxicity to algae: a highly pH dependent phenomenon. Can J Fish Aquat Sci 41:974–979

    Article  CAS  Google Scholar 

  • Radosevich SR, Holt JS, Ghersa CM (2007) Ecology of weeds and invasive plants: relationship to agriculture and natural resource management. Wiley, New York

    Book  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:230A–2221

    Google Scholar 

  • Rohr JR, McCoy KA (2010) A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ Health Perspect 118:20–32

    Article  CAS  Google Scholar 

  • Rohr JR, Kerby JL, Sih A (2006) Community ecology as a framework for predicting contaminant effects. Trends Ecol Evol 21:606–613

    Article  Google Scholar 

  • Rojíčková R, Maršálek B (1999) Selection and sensitivity comparisons of algal species for toxicity testing. Chemosphere 38:3329–3338

    Article  Google Scholar 

  • Ryberg KR, Vecchia AV, Martin JD, Gilliom RJ (2010) Trends in pesticide concentrations in urban streams in the United States, 1992-2008. USGS, Reston

    Book  Google Scholar 

  • Sanders JG (1979) Effects of arsenic speciation and phosphate concentration on arsenic inhibition of Skeletonema costatum (Bacillariophyceae). J Phycol 15:424–428

    Article  CAS  Google Scholar 

  • Scott GI, Holland AF, Sandifer PA (2006) Afterword—managing coastal urbanization and development in the twenty-first century: the need for a new paradigm. In: Changing land use patterns in the coastal zone. Springer, New York, pp 285–299

    Chapter  Google Scholar 

  • Sjollema SB, Vavourakis CD, Geest H, Vethaak AD, Admiraal W (2014) Seasonal variability in irradiance affects herbicide toxicity to the marine flagellate Dunaliella tertiolecta. Front Mar Sci 1:1–5

    Article  Google Scholar 

  • Solomon KR, Baker DB, Richards RP, Dixon KR, Klaine SJ, La Point TW, Kendall RJ, Weisskopf CP, Giddings JM, Giesy JP (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–76

    Article  CAS  Google Scholar 

  • Solomon KR, Carr JA, Du Preez LH, Giesy JP, Kendall RJ, Smith EE, Van Der Kraak GJ (2008) Effects of atrazine on fish, amphibians, and aquatic reptiles: a critical review. Crit Rev Toxicol 38:721–772

    Article  Google Scholar 

  • Sorokin C (1973) Dry weight, packed cell volume and optical density. In: Stein J (ed) Handbook of phycological methods—culture methods and growth measurements. Cambridge University Press, New York, pp 321–343

    Google Scholar 

  • Southwick L, Grigg B, Fouss J, Kornecki T (2003) Atrazine and metolachlor in surface runoff under typical rainfall conditions in southern Louisiana. J Agric Food Chem 51:5355–5361

    Article  CAS  Google Scholar 

  • Starr AV, Bargu S, Maiti K, DeLaune RD (2017) The effect of atrazine on Louisiana Gulf Coast estuarine phytoplankton. Arch Environ Contam Toxicol 72:178–188

    Article  CAS  Google Scholar 

  • Stauber J (1995) Toxicity testing using marine and freshwater unicellular algae. Australas J Ecotoxicol 1:15–24

    CAS  Google Scholar 

  • Stephan CE, Mount DI, Hansen DJ, Gentile J, Chapman GA, Brungs WA (1985) Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. US EPA, Duluth

    Google Scholar 

  • Stratton GW, Giles J (1990) Importance of bioassay volume in toxicity tests using algae and aquatic invertebrates. Bull Environ Contam Toxicol 44:420–427

    Article  CAS  Google Scholar 

  • Strong LC, Rosendahl C, Johnson G, Sadowsky MJ, Wackett LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68:5973–5980

    Article  CAS  Google Scholar 

  • Swanson SM, Rickard CP, Freemark KE, MacQuarrie P (1991) Testing for pesticide toxicity to aquatic plants: recommendations for test species. In: Gorsuch JW, Lower WR, Wang W, Lewis MA (eds) Plants for toxicity assessment: second volume, edition ASTM STP 1115. West Conshohocken, ASTM, pp 77–97

    Chapter  Google Scholar 

  • Tang J-X, Hoagland KD, Siegfried BD (1997) Differential toxicity of atrazine to selected freshwater algae. Bull Environ Contam Toxicol 59:631–637

    Article  CAS  Google Scholar 

  • Tang J, Hoagland KD, Siegfried BD (1998) Uptake and bioconcentration of atrazine by selected freshwater algae. Environ Toxicol Chem 17:1085–1090

    Article  CAS  Google Scholar 

  • US EPA (United States Environmental Protection Agency) (1971) Algal Assay Procedure Bottle Test. National Eutrophication Research Program. Pacific Northwest Environmental Research Laboratory, US EPA, Corvallis

    Google Scholar 

  • US EPA (United States Environmental Protection Agency) (1974) Marine algal assay procedure: bottle test. US EPA National Environmental Research Center, Corvallis

    Google Scholar 

  • US EPA (United States Environmental Protection Agency) (1985) Toxic substances control act test guidelines; final rules—environmental effects testing guidelines, algal acute toxicity test. Federal Register, 40 CFR Part 797.1050, pp. 39321–39331

  • US EPA (United States Environmental Protection Agency) (2007) National water quality inventory: report to Congress, 2002 Reporting Cycle. Report #EPA 841-R-07-011. U.S. EPA, Washington, DC

    Google Scholar 

  • US EPA (United States Environmental Protection Agency) (2016) Refined ecological risk assessment for atrazine. U.S. EPA, Washington, DC

    Google Scholar 

  • US EPA (United States Environmental Protection Agency) (2017) ECOTOX User Guide: ECOTOXicology Knowledgebase System. Version 4.0. US EPA, Washington, DC

    Google Scholar 

  • USDA (United States Department of Agriculture) (2017) Census of Agriculture. National Agricultural Statistics Service. USDA, Washington, DC

    Google Scholar 

  • Van Der Kraak GJ, Hosmer AJ, Hanson ML, Kloas W, Solomon KR (2014) Effects of atrazine in fish, amphibians, and reptiles: an analysis based on quantitative weight of evidence. Crit Rev Toxicol 44:1–66

    Article  CAS  Google Scholar 

  • Van Donk E, Abdel-Hamid M, Faafeng B, Källqvist T (1992) Effects of Dursban® 4E and its carrier on three algal species during exponential and P-limited growth. Aquat Toxicol 23:181–191

    Article  Google Scholar 

  • Vollenweider RA (ed) (1974) A manual on methods for measuring primary production in aquatic environments, 2nd edn. Blackwell Scientific, Oxford

    Google Scholar 

  • Walsh GE, McLaughlin LL, Yoder MJ, Moody PH, Lores EM, Forester J, Wessinger-Duvall PB (1988) Minutocellus polymorphus: a new marine diatom for use in algal toxicity tests. Environ Toxicol Chem 7:925–929

    CAS  Google Scholar 

  • Weiner JA, DeLorenzo ME, Fulton MH (2007) Atrazine induced species-specific alterations in the subcellular content of microalgal cells. Pestic Biochem Physiol 87:47–53

    Article  CAS  Google Scholar 

  • Wells PG, Lee K, Blaise C (1997) Microscale testing in aquatic toxicology: advances, techniques, and practice. CRC Press, Boca Raton

    Google Scholar 

  • Wood RJ, Mitrovic SM, Kefford BJ (2014) Determining the relative sensitivity of benthic diatoms to atrazine using rapid toxicity testing: a novel method. Sci Total Environ 485:421–427

    Article  CAS  Google Scholar 

  • Yates BS, Rogers WJ (2011) Atrazine selects for ichthyotoxic Prymnesium parvum, a possible explanation for golden algae blooms in lakes of Texas, USA. Ecotoxicology 20:2003–2010

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River, pp 389–394

    Google Scholar 

Download references

Acknowledgements

We thank Geoff Scott, Marie DeLorenzo, Stacy Nelson, Parke Rublee, and Tom Wentworth for their counsel. We also thank the NCSU CAAE staff and students for their many actions in helping to make this research possible. Funding support was provided by the National Oceanic and Atmospheric Administration—National Ocean Service, the National Park Service, the North Carolina General Assembly, and the Department of Plant and Microbial Biology at North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacie Flood.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flood, S., Burkholder, J. & Cope, G. Assessment of atrazine toxicity to the estuarine phytoplankter, Dunaliella tertiolecta (Chlorophyta), under varying nutrient conditions. Environ Sci Pollut Res 25, 11409–11423 (2018). https://doi.org/10.1007/s11356-018-1310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1310-1

Keywords

Navigation