Skip to main content
Log in

Uptake and distribution of fluopyram and tebuconazole residues in tomato and bell pepper plant tissues

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study describes the uptake and distribution of fungicides, fluopyram, and tebuconazole in tomato and bell pepper plant tissues from the soil drench application of their combination product fluopyram17.7% + tebuconazole 17.7%. For extraction and cleanup of fluopyram, its metabolite fluopyram benzamide, and tebuconazole samples, the QuEChERS method was used in conjunction with LC-MS/MS. The limit of detection (LOD) and limit of quantification (LOQ) of the method determined were 1.5 μg kg−1 and 0.005 mg kg−1, respectively, and recoveries of all analytes from sample matrices remained within the acceptable range of 70–120%. Rapid uptake of the fungicides by tomato and bell pepper plants was observed from the first day onwards. In the tomato plant, the major part of the fungicides accumulated in the roots, whereas in bell pepper plant, it accumulated both in the roots and in the leaves. Accumulation of fluopyram and tebuconazole residues was lowest in tomato and bell pepper fruits which were much below their respective maximum residue limits (MRLs). The highest residue concentration of fluopyram and tebuconazole in tomato fruits was 0.060 and 0.009 mg kg−1; the corresponding values in bell pepper fruits were 0.080 and 0.013 mg kg−1. In field soil, fluopyram residues were 3.18–3.570 mg kg−1 initially which dissipated at the half-life of 36 days. Tebuconazole concentration was 1.57–1.892 mg kg−1 initially, and it dissipated at the half-life of 44.5–49.5 days. The major metabolite of fluopyram, fluopyram benzamide, was detected in plant tissues as well as in soil, and remained within 12% of the parent compound. The results of the study indicated that fluopyram and tebuconazole are less likely of entry into food chain through intake of tomato and bell pepper fruits if these crops are grown on soil contaminated with these fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Australian Pesticides and Veterinary Medicines Authority (APMV) (2015) APVMA product number 63642. Evaluation of the new active fluopyram in the product Luna privilege fungicide

  • Ben-Aziz A, Aharonson N (1974) Dynamics of uptake, translocation, and disappearance of thiabendazole and methyl-2-benzimidazolecarbamate in pepper and tomato plants. Pestic Biochem Physiol 4:120–126

    Article  CAS  Google Scholar 

  • Bhowmik D, Kumar S, Paswan S, Srivastava S (2012) Tomato—a natural medicine and its health benefits. J Pharma Phytochem 1:33–43

    Google Scholar 

  • Caldas ED (2010) Tebuconazole (189) first draft prepared by Eloisa Dutra Caldas University of Brasilia Brasilia, Brazil 1419

  • Cohen Y, Gisi U (1993) Uptake, translocation and degradation of [14C] cymoxanil in tomato plants. Crop Protec 12:284–292

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority) (2016) Reasoned opinion on the modification of the existing maximum residue levels for fluopyram in various crops. EFSA J 14:4520

    Google Scholar 

  • EFSA (European Food Safety Authority) Scientific Report (2008) Conclusion on the peer review of tebuconazole 176: 1–109

  • EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, MedinaP MI, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A, Villamar-Bouza L (2017) Reasoned opinion on the modification of the existing maximum residue level for tebuconazole in beans with pods. EFSA J 15:4870

    Google Scholar 

  • EU Pesticide Database Available at http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=pesticide.residue.CurrentMRL&language=EN. Accessed 4 June 2018

  • Fan K, Wang J, Fu L, Li X, Zhang Y, Zhang X, Zhai H, Qu J (2016) Sensitivity of Botryosphaeria dothidea from apple to tebuconazole in China. Crop Protec 87:1–5

    Article  CAS  Google Scholar 

  • FSSAI (Food Safety and Standards Authority of India) Notification-F. No.01-SP (PAR)-Notification-Pesticides /Stds-FSSAI/2017. The Food Safety and Standards (Contaminants, Toxins and Residues) Regulations, 2011

  • Gudmestad NC, Arabiat S, Miller JS, Pasche JS (2013) Prevalence and impact of SDHI fungicide resistance in Alternaria solani. Plant Dis 97:952–960

    Article  CAS  Google Scholar 

  • Hwang JI, Lee SE, Kim JE (2017) Comparison of theoretical and experimental values for plant uptake of pesticide from soil. PLoS One Available at 12:e0172254. https://doi.org/10.1371/journal.pone.0172254

    Article  CAS  Google Scholar 

  • Jeong-In H, Sung-Eun L, Jang-Eok K (2015) Plant uptake and distribution of endosulfan and its sulfate metabolite persisted in soil. PLoS One 12:e0172254. Available at. https://doi.org/10.1371/journal.pone.0141728

    Article  CAS  Google Scholar 

  • Justin MV, Clifford SS (2007) Efficacy of soil and foliar-applied azadirachtin in combination with and in comparison to soil-applied imidacloprid and foliar-applied carbaryl against Japanese beetles on roses. HortTechnology 17(3):316–321

  • Labourdette G, Lachaise H, Rieck H, Steiger D (2010) Fluopyram: a new antifungal agent for the control of problematic plant diseases of many crops. Julius-Kuhn-Archiv 428:91

    Google Scholar 

  • Labourdette G, Lachaise H, Rieck H, Steiger D, Dehne HW, Deising HB, Gisi U, Kuck KH, Russell PE, Lyr H (2011) Fluopyram: efficacy and beyond on problematic diseases. In Modern fungicides and antifungal compounds VI. 16th International Reinhardsbrunn Symposium, Friedrichroda, Germany, April 25-29, 2010: 75–80

  • Lavezzaro S, Morando A (2014) A new mixture effective against powdery mildew on grapes. Informatore Agrario 70:47

    Google Scholar 

  • Lunn D (2010) Fluopyram (243) The first draft was prepared by Mr David Lunn, New Zealand Food Safety Authority, Wellington, New Zealand, 1415

  • Lyu T, Zhang L, Xu X, Arias CA, Brix H, Carvalho PN (2018) Removal of the pesticide tebuconazole in constructed wetlands: design comparison, influencing factors and modeling. Environ Pollut 233:71–80

    Article  CAS  Google Scholar 

  • Matheron ME, Porchas M (2000) Comparison of five fungicides on development of root, crown, and fruit rot of Chile pepper and recovery of Phytophthora capsici from soil. Plant Dis 84:1038–1043

    Article  CAS  Google Scholar 

  • McKay AH, Hagerty GC, Follas GB, Moore MS, Christie MS, Beresford RM (2011) Succinate dehydrogenase inhibitor (SDHI) fungicide resistance prevention strategy. New Zealand Plant Protec 64:119–124

    CAS  Google Scholar 

  • Meyer MD, Hausbeck MK (2013) Using Soil-applied fungicides to manage Phytophthora crown and root rot on summer squash. 97: 107–112

  • Mosquera-Vivas CS, Martinez MJ, Garcia-Santos G, Guerrero-Dallos JA (2018) Adsorption-desorption and hysteresis phenomenon of tebuconazole in Colombian agricultural soils: experimental assays and mathematical approaches. Chemosphere 190:393–404

    Article  CAS  Google Scholar 

  • Mukherjee S, Surendra K, Srivastava A, Srivastava PC (2011) Uptake and distribution of 14C-labeled Fosthiazate in tomato (Lycopersicon esculentum L.). Ag. Sciences 2:308–312

    CAS  Google Scholar 

  • Napier BA, Fellows RJ, Minc LD (2014) Transfer factors for contaminant uptake by fruit and nut trees. United States Nuclear Regulatory Commission. NUREG/CR-7174, PNNL-22975

  • Nasir UM, Hussain S, Jabbar S (2015) Tomato processing, lycopene and health benefits: A Review. Sci Lett 3:1–5

    Google Scholar 

  • Patel BV, Chawla S, Gor H, Upadhyay P, Parmar KD, Patel AR, Shah PG (2016) Residue decline and risk assessment of fluopyram + tebuconazole (400SC) in/on onion (Allium cepa). Environ Sci Pollut Res Int 23:20871–20881

    Article  CAS  Google Scholar 

  • Petersen LS, Larsen EH, Larsen PB, Bruun P (2002) Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ Sci Technol 36:3057–3063

    Article  CAS  Google Scholar 

  • Piechowicz B, Wos I, Podbielska M, Grodzicki P (2018) The transfer of active ingredients of insecticides and fungicides from an orchard to beehives. J Environ Sci Health B 53:18–24

    Article  CAS  Google Scholar 

  • Podbielska M, Szpyrka E, Piechowicz B, Zwolak A, Sadło S (2017) Behavior of fluopyram and tebuconazole and some selected pesticides in ripe apples and consumer exposure assessment in the applied crop protection framework. Environ Monit Assess 189:350

    Article  CAS  Google Scholar 

  • Saha S, Sharma BK, Kumar A, Rai AB (2012) On field efficacy of Fluopyram200-Tebuconazole 200-400 SC against powdery mildew of chilli. Ann Plant Protec Sci 20:511

    Google Scholar 

  • SANTE (2017) Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. SANTE/11813/2017

  • Singh A, Mohan C, Singh H, Amrate PK, Kumar P (2012) Promising activity of fluopyram 200 + tebuconazole 200-400 SC against anthracnose and powdery mildew of grapevine plant. Dis Res (Ludhiana) 27:229–231

    Google Scholar 

  • Wei P, Liu Y, Li W, Qian Y, Nie Y, Kim D, Wang M (2016) Metabolic and dynamic profiling for risk assessment of fluopyram, a typical phenylamide fungicide widely applied in vegetable ecosystem. Sci Rep 6:33898

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soudamini Mohapatra.

Additional information

Responsible editor: Ester Heath

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matadha, N.Y., Mohapatra, S., Siddamallaiah, L. et al. Uptake and distribution of fluopyram and tebuconazole residues in tomato and bell pepper plant tissues. Environ Sci Pollut Res 26, 6077–6086 (2019). https://doi.org/10.1007/s11356-018-04071-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-04071-4

Keywords

Navigation