Skip to main content
Log in

An approach to study ultrastructural changes and adaptive strategies displayed by Acinetobacter guillouiae SFC 500-1A under simultaneous Cr(VI) and phenol treatment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Acinetobacter guillouiae SFC 500-1A, a native bacterial strain isolated from tannery sediments, is able to simultaneously remove high concentrations of Cr(VI) and phenol. In this complementary study, high-resolution microscopy techniques, such as atomic force microscopy (AFM) and transmission electron microscopy (TEM), were used to improve our understanding of some bacterial adaptive mechanisms that enhance their ability to survive. AFM contributed in gaining insight into changes in bacterial size and morphology. It allowed the unambiguous identification of pollutant-induced cellular disturbances and the visualization of bacterial cells with depth sensitivity. TEM analysis revealed that Cr(VI) produced changes mainly at the intracellular level, whereas phenol produced alterations at the membrane level. This strain tended to form more extensive biofilms after phenol treatment, which was consistent with microscopy images and the production of exopolysaccharides (EPSs). In addition, other exopolymeric substances (DNA, proteins) significantly increased under Cr(VI) and phenol treatment. These exopolymers are important for biofilm formation playing a key role in bacterial aggregate stability, being especially useful for bioremediation of environmental pollutants. This study yields the first direct evidences of a range of different changes in A. guillouiae SFC 500-1A which seems to be adaptive strategies to survive in stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerley DF, Barak Y, Lynch SV et al (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381

    Article  CAS  Google Scholar 

  • APHA-AWWA (1998) Standard methods for the examination of water and wastewater, 17th ed

  • ATSDR (2005) Agency for Toxic Substances and Disease Registry. Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA) priority list of hazardous substances. http://www.atsdr.cdc.gov/cercla/05list.html

  • Batool R, Yrjälä K, Hasnain S (2014) Impact of environmental stress on biochemical parameters of bacteria reducing chromium. Braz J Microbiol 45:573–583

    Article  CAS  Google Scholar 

  • Bencosme SA, TsutSumi V (1970) Fast method for processing biologic material for electron microscopy. Lab Invest 23:447

    CAS  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobiurn Zegurninosarum. J Gen Microbiol 84:188–198

    CAS  Google Scholar 

  • Bhattacharya A, Gupta A (2013) Evaluation of Acinetobacter sp. B9 for Cr(VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environ Sci Pollut Res 20:6628–6637

    Article  CAS  Google Scholar 

  • Bhattacharya A, Gupta A, Kaur A (2014) Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Appl Microbiol Biotechnol 98:9829–9841

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 254:248–254

    Article  Google Scholar 

  • Busscher HJ, Van Der Mei HC (2012) How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog 8:1–4

    Article  Google Scholar 

  • Cerca N, Pier GB, Vilanova M et al (2005) Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res Microbiol 156:506–514

    Article  CAS  Google Scholar 

  • Das T, Sharma PK, Busscher HJ et al (2010) Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 76:3405–3408

    Article  CAS  Google Scholar 

  • Das T, Sharma PK, Krom BP et al (2011) Role of eDNA on the adhesion forces between Streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity. Langmuir 27:10113–10118

    Article  CAS  Google Scholar 

  • Daulton TL, Little BJ, Lowe K, Jones-meehan J (2001) In situ environmental cell-transmission electron microscopy study of microbial reduction of chromium (VI) using electron energy loss spectroscopy. Microsc Microanal 7:470–485

    CAS  Google Scholar 

  • Denkhaus E, Meisen S, Telgheder U, Wingender J (2007) Chemical and physical methods for characterisation of biofilms. Microchim Acta 158:1–27

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250–251:272–291

    Article  Google Scholar 

  • Dische Z (1962) General color reactions. Methods Carbohydr Chem 1:478–512

    CAS  Google Scholar 

  • Dobinsky S, Kiel K, Rohde H et al (2003) Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J Bacteriol 185:2879–2886

    Article  CAS  Google Scholar 

  • Dogan NM, Doganli GA, Dogan G, Bozkaya O (2015) Characterization of extracellular polysaccharides (EPS) produced by thermal Bacillus and determination of environmental conditions affecting exopolysaccharide production. Int J Environ Res 9:1107–1116

    CAS  Google Scholar 

  • Doyle RJ (2000) Contribution of the hydrophobic effect to microbial infection. Microbes Infect 2:391–400

    Article  CAS  Google Scholar 

  • Dubrovin EV, Popova AV, Kraevskiy SV et al (2012) Atomic force microscopy analysis of the Acinetobacter baumannii bacteriophage AP22 lytic cycle. 7:1–9

  • Dufrene YF (2008) Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protocols 3:1132–1138

    Article  CAS  Google Scholar 

  • Dufrêne YF (2014) Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface. MBio 5:1–14

    Article  Google Scholar 

  • Fang HHP, Xu L, Chan K (2002) Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res 36:4709–4716

    Article  CAS  Google Scholar 

  • Farrell A, Quilty B (2002) Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. J Ind Microbiol Biotechnol 28:316–324

    Article  CAS  Google Scholar 

  • Francisco R, Moreno A, Morais PV (2010) Different physiological responses to chromate and dichromate in the chromium resistant and reducing strain Ochrobactrum tritici 5bvl1. Biometals 23:713–725

    Article  CAS  Google Scholar 

  • Francius G, Lebeer S, Alsteens D et al (2008) Detection, localization, and conformational analysis of single polysaccharide molecules on live bacteria. Am Chem Soc 2:1921–1929

    CAS  Google Scholar 

  • Guibaud G, Van Hullebusch E, Bordas F (2006) Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges: pH-sorption edge tests and mathematical equilibrium modelling. Chemosphere 64:1955–1962

    Article  CAS  Google Scholar 

  • Harish R, Samuel J, Mishra R et al (2012) Bio-reduction of Cr (VI) by exopolysaccharides (EPS) from indigenous bacterial species of Sukinda chromite mine, India. Biodegradation 23:487–496

    Article  CAS  Google Scholar 

  • He M, Li X, Guo L et al (2010) Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus. BMC Microbiol 10:221

    Google Scholar 

  • Hori K, Watanabe H, Ishii S et al (2008) Monolayer adsorption of a “bald” mutant of the highly adhesive and hydrophobic bacterium Acinetobacter sp. strain Tol 5 to a hydrocarbon surface. Appl Environ Microbiol 74:2511–2517

    Article  CAS  Google Scholar 

  • Hu Z, Jin J, Abruña HD et al (2007) Spatial distributions of copper in microbial biofilms by scanning electrochemical microscopy. Environ Sci Technol 41:936–941

    Article  CAS  Google Scholar 

  • Hung C, Warnken KW, Santschi PH (2005) A seasonal survey of carbohydrates and uronic acids in the Trinity River, Texas. Org Geochem 36:463–474

    Article  CAS  Google Scholar 

  • Kang Y, Park W (2010) Protection against diesel oil toxicity by sodium chloride-induced exopolysaccharides in Acinetobacter sp. strain DR1. JBIOSC 109:118–123

    CAS  Google Scholar 

  • Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441:300–302

    Article  CAS  Google Scholar 

  • Li J, Mclandsborough LA (1999) The effects of the surface charge and hydrophobicity of Escherichia coli on its adhesion to beef muscle. Int J Food Microbiol 53:185–193

    Article  CAS  Google Scholar 

  • Li B, Pan D, Zheng J et al (2008) Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir 24:9630–9635

    Article  CAS  Google Scholar 

  • Liu HH, Yang YR, Shen XC et al (2008) Role of DNA in bacterial aggregation. Curr Microbiol 57:139

    Article  Google Scholar 

  • Longo G, Kasas S (2014) Effects of antibacterial agents and drugs monitored by atomic force microscopy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:230–244

    Article  CAS  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    Article  CAS  Google Scholar 

  • Morris VJ, Kirby AR, Gunning AP (1999) Atomic force microscopy for biologists. Imperial College Press, London

    Book  Google Scholar 

  • Mueller K, González JE (2011) Complex regulation of symbiotic functions is coordinated by MucR and quorum sensing in Sinorhizobium meliloti. J Bacteriol 193:485–496

    Article  CAS  Google Scholar 

  • Mulcahy H, Charron-mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathogens 4(11):1–12

  • O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  Google Scholar 

  • Onbasli D, Aslim B (2009) Effects of some organic pollutants on the exopolysaccharides (EPSs) produced by some Pseudomonas spp. strains. J Hazard Mater 168:64–67

    Article  CAS  Google Scholar 

  • Ontañon OM, González PS, Agostini E (2015) Biochemical and molecular mechanisms involved in simultaneous phenol and Cr(VI) removal by Acinetobacter guillouiae SFC 500-1A. Environ Sci Pollut Res 17:13014–13023

    Article  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64

    Article  CAS  Google Scholar 

  • Pompilio A, Piccolomini R, Picciani C et al (2008) Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: the role of cell surface hydrophobicity and motility. FEMS Microbiol Lett 287:41–47

    Article  CAS  Google Scholar 

  • Priester JH, Olson SG, Webb SM et al (2006) Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 72:1988–1996

    Article  CAS  Google Scholar 

  • Prieto Contreras LF, Alvelar Gonzáles FJ, Loera Muro VM et al (2015) Bioflocks structure from enriched lab-scale stabilization ponds used to remove high chromium concentrations. Int J Curr Microbiol App Sci 4:625–634

    Google Scholar 

  • Quintelas C, da Silva VB, Silva B et al (2011) Optimization of production of extracellular polymeric substances by Arthrobacter viscosus and their interaction with a 13X zeolite for the biosorption of Cr(VI). Environ Technol 32:1541–1549

    Article  CAS  Google Scholar 

  • Rode MT, Langsrud S, Holck A, Møretrø T (2007) Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food 116:372–383

    CAS  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Ryu JH, Kim H, Beuchat LR (2004) Attachment and biofilm formation by Escherichia coli O157:H7 on stainless steel as influenced by exopolysaccharide production, nutrient availability, and temperature. J Food Prot 67:2123–2131

    Article  CAS  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235

    Article  CAS  Google Scholar 

  • Samuel J, Paul ML, Pulimi M et al (2012) Hexavalent chromium bioremoval through adaptation and consortia development from Sukinda chromite mine isolates. Ind Eng Chem Res 51:3740–3749

    Article  CAS  Google Scholar 

  • Santamaría M, Díaz-Marrero AR, Hernández J et al (2003) Effect of thorium on the growth and capsule morphology of Bradyrhizobium. Environ Microbiol 5:916–924

    Article  Google Scholar 

  • Sharma SK, Petrusevski B, Amy G (2008) Chromium removal from water: a review. J Water Supply Res Technol AQUA 57:541–553

    Article  CAS  Google Scholar 

  • Sheng GP, Yu HQ, Yue ZB (2005) Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances. Appl Microbiol Biotechnol 69(2):216–22

  • Sidek MSBM (2010) The removal of chromium (VI) and phenol from industrial waste waters mediated by Acinetobacter haemolyticus. Universiti Teknologi Malaysia

  • Srivastava S, Thakur IS (2007) Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18:637–646

    Article  CAS  Google Scholar 

  • Steinberger RE, Holden PA (2005) Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol 71:5404–5410

    Article  CAS  Google Scholar 

  • Stepanovic S, Cirkovic I, Ranin L, Svabic M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38:428–432

    Article  CAS  Google Scholar 

  • Strelkova EA, Pozdnyakova NV, Zhurina MV et al (2013) Role of the extracellular polymer matrix in resistance of bacterial biofilms to extreme environmental factors. Microbiology 82:119–125

    Article  CAS  Google Scholar 

  • Tahmourespour A, Kermanshahi RK, Salehi R, Nabinejad A (2008) The relationship between cell surface hydrophobicity and antibiotic resistance of streptococcal strains isolated from dental plaque and caries. Irian J Basic Med Sci 10:251–255

    Google Scholar 

  • Vuong C, Otto M (2002) Staphylococcus epidermidis infections. Microbes Infect 4:481–489

    Article  Google Scholar 

  • Wagner M, Nicell JA (2002) Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide. Water Res 36:4041–4052

    Article  CAS  Google Scholar 

  • Zakaria ZA, Mat Jais AM, Mastura M et al (2007) In vitro antistaphylococcal activity of the extracts of several neglected plants in Malaysia. Int J Pharmacol 3:428–431

    Article  Google Scholar 

Download references

Acknowledgements

G.M.M., E.A., and P.S.G. are members of the research career from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina). M.F. has a fellowship from CONICET. We wish to thank PPI (SECyT-UNRC), CONICET, MinCyT Córdoba, and PICT (FONCyT) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola S. González.

Additional information

Responsible editor: Diane Purchase

Electronic supplementary material

ESM 1

(DOCX 357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, M., Morales, G.M., Agostini, E. et al. An approach to study ultrastructural changes and adaptive strategies displayed by Acinetobacter guillouiae SFC 500-1A under simultaneous Cr(VI) and phenol treatment. Environ Sci Pollut Res 24, 20390–20400 (2017). https://doi.org/10.1007/s11356-017-9682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9682-1

Keywords

Navigation