Skip to main content
Log in

Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5–20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, and UV–visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-Fe2O3 and γ-Fe2O3), particle size distribution (5–20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 m2 g−1 for MG-9 and 207 m2 g−1 for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g L−1 due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-Fe2O3 gives a possibility for an easy separation of the catalyst particles after their use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhavan O (2010) Thickness dependent activity of nanostructured TiO2/α-Fe2O3 photocatalyst thin films. Appl Surf Sci 257:1724–1728. doi:10.1016/j.apsusc.2010.09.005

    Article  CAS  Google Scholar 

  • Akhavan O, Azimirad R (2009) Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation. Appl Catal A Gen 369:77–82. doi:10.1016/j.apcata.2009.09.001

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses, Second edn. Wiley-Vch Verlag GmbH & Co., Weinheim

    Book  Google Scholar 

  • Frydrych J, Machala L, Tucek J, Siskova K, Filip J, Pechousek J, Safarova K, Vondracek M, Seo JH, Schneeweiss O, Greatzel M, Sivula K, Zboril R (2012) Facile fabrication of tin-doped hematite photoelectrodes—effect of doping on magnetic properties and performance for light-induced water splitting. J Mater Chem 22:23232–23239. doi:10.1039/C2JM34639G

    Article  CAS  Google Scholar 

  • Gao X, Chorover J (2010) Adsorption of sodium dodecyl sulfate (SDS) at ZnSe and α-Fe2O3 surfaces: combining infrared spectroscopy and batch uptake studies. J Colloid Interface Sci 348:167–176. doi:10.1016/j.jcis.2010.04.011

    Article  CAS  Google Scholar 

  • Gregor C, Hermanek M, Jancik D, Pechousek J, Filip J, Hrbac J, Zboril R (2010) The effect of surface area and crystal structure on the catalytic efficiency of iron(III) oxide nanoparticles in hydrogen peroxide decomposition. Eur J Inorg Chem 2010:2343–2351. doi:10.1002/ejic.200901066

    Article  Google Scholar 

  • Han C, Pelaez M, Likodimos V, Kontos AG, Falaras P, O’Shea K, Dionysiou DD (2011) Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl Catal B 107:77–87. doi:10.1016/j.apcatb.2011.06.039

    Article  CAS  Google Scholar 

  • Han C, Likodimos V, Khan JA, Nadagouda MN, Andersen J, Falaras P, Rosales-Lombardi P, Dionysiou DD (2014) UV–visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline. Environ Sci Pollut Res 21:11781–11793. doi:10.1007/s11356-013-2233-5

    Article  CAS  Google Scholar 

  • Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C (2007) Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 129:10929–10936. doi:10.1021/ja072918x

    Article  CAS  Google Scholar 

  • Hermanek M, Hermankova P, Pechousek J (2010) Quasi-isothermal decomposition: a way to nanocrystalline mesoporous-like Fe2O3 catalyst for rapid heterogeneous decomposition of hydrogen peroxide. J Mater Chem 20:3709–3715. doi:10.1039/C000632G

    Article  CAS  Google Scholar 

  • Kato R, Komatsu T (2013) Structure and photocatalytic activity of iron oxide nanotubes prepared from ferritin. J Inorg Organomet Polym 23:167–171. doi:10.1007/s10904-012-9725-5

    Article  CAS  Google Scholar 

  • Khan S, Han C, Khan HM, Boccelli DL, Nadagouda MN, Dionysiou DD (2016) Efficient degradation of lindane by visible and simulated solar light-assisted S-TiO2/peroxymonosulfate process: kinetics and mechanistic investigations. J Mol Catal A. doi:10.1016/j.molcata.2016.11.035

  • Khedr MH, Abdel Halin KS, Soliman NK (2009) Synthesis and photocatalytic activity of nano-sized iron oxides. Meter Lett 63:598–601. doi:10.1016/j.matlet.2008.11.050

    Article  CAS  Google Scholar 

  • Kiwi J, Grätzel M (1987) Light-induced hydrogen formation and photo-uptake of oxygen in colloidal suspensions of α-Fe2O3. J Chem Soc Faraday Trans 83:1101–1108. doi:10.1039/F19878301101

    Article  CAS  Google Scholar 

  • Klencsár Z, Kuzmann E, Vértes A (1996) User-friendly software for Mössbauer spectrum analysis. J Radioanal Nucl Chem 210:105–118. doi:10.1007/BF02055410

    Article  Google Scholar 

  • Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J (2008) Body iron metabolism and pathophysiology of iron overload. Int J Hematol 88:7–15. doi:10.1007/s12185-008-0120-5

    Article  CAS  Google Scholar 

  • Le Formal F, Gratzel M, Sivula M (2010) Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv Funct Mater 20:1099–1107. doi:10.1002/adfm.200902060

    Article  Google Scholar 

  • Le Formal F, Sivula K, Grätzel M (2012) The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments. J Phys Chem C 116:26707–26720. doi:10.1021/jp308591k

    Article  Google Scholar 

  • Leland JK, Bard AJ (1987) Photochemistry of colloidal semiconducting iron oxide polymorphs. J Phys Chem 91(19):5076–5083. doi:10.1021/j100303a039

    Article  CAS  Google Scholar 

  • Liao W, Zhang Y, Zhang M, Murugananthan M, Yoshihara S (2013) Photoelectrocatalytic degradation of microcystin-LR using Ag/AgCl/TiO2 nanotube arrays electrode under visible light irradiation. Chem Eng J 231:455–463. doi:10.1016/j.cej.2013.07.054

    Article  CAS  Google Scholar 

  • Liu G, Han C, Pelaez M, Zhu D, Liao S, Likodimos V, Kontos AG, Falaras P, Dionysiou DD (2013) Enhanced visible light photocatalytic activity of C-N-codoped TiO2 films for the degradation of microcystin-LR. J Mol Catal A 372:58–65. doi:10.1016/j.molcata.2013.02.006

    Article  CAS  Google Scholar 

  • Lopes T, Andrade L, Le Formal F, Gratzel M, Sivula K, Mendes A (2014) Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy. Phys Chem Chem Phys 16:16515–16523. doi:10.1039/c3cp55473b

    Article  CAS  Google Scholar 

  • Mishra M, Chun D-M (2015) α-Fe2O3 as a photocatalytic material: a review. Appl Catal A: General 498:126–141. doi:10.1016/j.apcata.2015.03.023

    Article  CAS  Google Scholar 

  • Mustafa S, Tasleem S, Naeem A (2004) Surface charge properties of Fe2O3 in aqueous and alcoholic mixed solvents. J Colloid Interface Sci 275:523–529. doi:10.1016/j.jcis.2004.02.089

    Article  CAS  Google Scholar 

  • Pechoušek J, Jančík D, Frydrych J, Navařík J, Novák P (2012) Setup of Mössbauer spectrometers at RCPTM. AIP Conf Proc 1489:186–193. doi:10.1063/1.4759489

    Article  Google Scholar 

  • Pelaez M, de la Cruz AA, Stathatos E, Falaras P, Dionysiou DD (2009) Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water. Catal Today 144:19–25. doi:10.1016/j.cattod.2008.12.022

    Article  CAS  Google Scholar 

  • Pelaez M, Falaras P, Likodimos V, Kontos AG, de la Cruz AA, O’Shea K, Dionysiou DD (2010) Synthesis, structural characterization and evaluation of sol–gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR. Appl Catal B 99:378–387. doi:10.1016/j.apcatb.2010.06.017

    Article  CAS  Google Scholar 

  • Pelaez M, de la Cruz AA, O’Shea K, Falaras P, Dionysiou DD (2011) Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst. Water Res 45:3787–3796. doi:10.1016/j.watres.2011.04.036

    Article  CAS  Google Scholar 

  • Prucek R, Hermanek M, Zboril R (2009) An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation—a competition between homogeneous and heterogeneous catalysis. Appl Catal A 366:325–332. doi:10.1016/j.apcata.2009.07.019

    Article  CAS  Google Scholar 

  • Ruppert G, Bauer R, Heisler G (1993) The photo-Fenton reaction—an effective photochemical wastewater treatment process. J Photochem Photobiol A 73:75–78. doi:10.1016/1010-6030(93)80035-8

    Article  CAS  Google Scholar 

  • Shelton TL, Harvey N, Wang J, Osterloh FE (2016) Photochemistry of hematite photoanodes under zero applied bias. Appl Catal A 521:168–173. doi:10.1016/j.apcata.2015.11.041

    Article  CAS  Google Scholar 

  • Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Grätzel M (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132:7436–7444. doi:10.1021/ja101564f

    Article  CAS  Google Scholar 

  • Su Y, Deng Y, Du Y (2013) Alternative pathways for photocatalytic degradation of microcystin-LR revealed by TiO2 nanotubes. J Mol Catal A 373:18–24. doi:10.1016/j.molcata.2013.02.031

    Article  CAS  Google Scholar 

  • Triantis TM, Fotiou T, Kaloudis T, Kontos AG, Falaras P, Dionysiou DD, Pelaez M, Hiskia A (2012) Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2. J Hazard Mater 211-212:196–202. doi:10.1016/j.jhazmat.2011.11.042

    Article  CAS  Google Scholar 

  • Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82-83:969–974. doi:10.1016/0378-4274(95)03532-X

    Article  CAS  Google Scholar 

  • Yang J, Chen DX, Deng AP, Huang YP, Chen CC (2011) Visible-light-driven photocatalytic degradation of microcystin-LR by Bi-doped TiO2. Res Chem Intermed 37:47–60. doi:10.1007/s11164-010-0224-4

    Article  Google Scholar 

  • Zhang Y, Zhang Y, Tan J (2013) Novel magnetically separable AgCl/iron oxide composites with enhanced photocatalytic activity driven by visible light. J Alloys Comp 574:383–390. doi:10.1016/j.jallcom.2013.05.179

    Article  CAS  Google Scholar 

  • Zhao C, Pelaez M, Duan X, Deng H, O’Shea K, Fatta-Kassinos D, Dionysiou DD (2013) Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: kinetics and mechanism studies. Appl Catal B 134-135:83–92. doi:10.1016/j.apcatb.2013.01.003

    Article  CAS  Google Scholar 

  • Zhao C, Pelaez M, Dionysiou DD, Pillai SC, Byrne JA, O'Shea KE (2014) UV and visible light activated TiO2 photocatalysis of 6-hydroxymethyl uracil, a model compound for the potent cyanotoxin cylindrospermopsin. Catal Today 224:70–76. doi:10.1016/j.cattod.2013.09.042

    Article  CAS  Google Scholar 

  • Zhou X, Yang H, Wang C, Mao X, Wang Y, Yang Y, Liu G (2010) Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles. J Phys Chem C 114:17051–17061. doi:10.1021/jp103816e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the project LO1305 of the Ministry of Education, Youth and Sports of the Czech Republic and by Operational Program Education for Competitiveness—European Social Fund (projects CZ.1.07/2.3.00/30.0004 and CZ.1.07/2.3.00/20.0058). The authors thank Petr Novak, Michal Krizek, Klara Cepe, Ondrej Malina, and Josef Kaslik (all at Palacký University in Olomouc, Czech Republic) for the characterization of nanopowders. D.D. Dionysiou also acknowledges support from the University of Cincinnati through a UNESCO cochair professor position on “Water Access and Sustainability.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Libor Machala or Dionysios D. Dionysiou.

Additional information

Responsible editor: Suresh Pillai

Additional file

Additional file 1

(DOCX 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Machala, L., Medrik, I. et al. Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination. Environ Sci Pollut Res 24, 19435–19443 (2017). https://doi.org/10.1007/s11356-017-9566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9566-4

Keywords

Navigation