Skip to main content
Log in

Nitrate removal from drinking water with a focus on biological methods: a review

  • Water Industry: Water-Energy-Health Nexus
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This article summarizes several developed and industrial technologies for nitrate removal from drinking water, including physicochemical and biological techniques, with a focus on autotrophic nitrate removal. Approaches are primarily classified into separation-based and elimination-based methods according to the fate of the nitrate in water treatment. Biological denitrification as a cost-effective and promising method of biological nitrate elimination is reviewed in terms of its removal process, applicability, efficiency, and associated disadvantages. The various pathways during biological nitrate removal, including assimilatory and dissimilatory nitrate reduction, are also explained. A comparative study was carried out to provide a better understanding of the advantages and disadvantages of autotrophic and heterotrophic denitrification. Sulfur-based and hydrogen-based denitrifications, which are the most common autotrophic processes of nitrate removal, are reviewed with the aim of presenting the salient features of hydrogenotrophic denitrification along with some drawbacks of the technology and research areas in which it could be used but currently is not. The application of algae-based water treatment is also introduced as a nature-inspired approach that may broaden future horizons of nitrate removal technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

USEPA:

United States Environmental Protection Agency

MCL:

Maximum contaminant levels

WHO:

World Health Organization

EEC:

European Economic Community

RO:

Reverse osmosis

IX:

Ion exchange

ED:

Electro dialysis

CD:

Chemical denitrification

BD:

Biological denitrification

SBA:

Strong base anion

DO:

Dissolved oxygen

ATP:

Adenosine triphosphate

HRT:

Hydraulic retention time

COD:

Chemical oxygen demand

BOD:

Biological oxygen demand

C/N:

Carbon-to-nitrate

DOC:

Dissolved organic carbon

DBP:

Disinfection byproduct

BER:

Bio-electrochemical reactor

O&M:

Operations and maintenance

References

  • Abu Hasan H, Sheikh Abdullah R, Kamarudin K, Tan Kofli N, Anuar N (2014) Kinetic evaluation of simultaneous COD, ammonia and manganese removal from drinking water using a biological aerated filter system. Sep Purif Technol 130:56–64. doi:10.1016/j.seppur.2014.04.016

    Article  CAS  Google Scholar 

  • Ashok V, Hait S (2015) Remediation of nitrate-contaminated water by solid-phase denitrification process-a review. Environ Sci Pollut Res 22:8075–8093. doi:10.1007/s11356-015-4334-9

    Article  CAS  Google Scholar 

  • Aslan S, Turkman A (2003) Biological denitrification of drinking water using various natural organic solid substrates. Water Sci Technol 48:489–495. doi:10.1007/s11426-008-0111-7

    Article  CAS  Google Scholar 

  • Aslan S, Turkman A (2006) Nitrate and pesticides removal from contaminated water using biodenitrification reactor. Process Biochem 41:882–886. doi:10.1016/j.procbio.2005.11.004

    Article  CAS  Google Scholar 

  • Banasiak L, Schafer A (2009) Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. J Membrane Sci 334:101–109. doi:10.1016/j.memsci.2009.02.020

    Article  CAS  Google Scholar 

  • Bastviken SK, Eriksson PG, Premrove A, Tonderski K (2005) Potential denitrification in wetland sediments with different plant species detritus. Ecol Eng 25:183–190. doi:10.1016/j.ecoleng.2005.04.013

    Article  Google Scholar 

  • Bellona C, Drewes JE, Oelker G, Luna J, Filteau G, Amy G (2008) Comparing nanofiltration and reverse osmosis for drinking water augmentation. J Am Water Works Ass 100:102–116

    Article  CAS  Google Scholar 

  • Bergey DH, Buchanan RE, Gibbons NE (1974) Bergey’s manual of determinative bacteriology. 8th ed. Williams & Wilkins Company, Baltimore, MD, p 456–461

  • Bohdziewicz J, Bodzek M, Wasik E (1999) The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater. Desalination 121:139–147. doi:10.1016/S0011-9164(99)00015-6

    Article  CAS  Google Scholar 

  • Boley A, Mergaert J, Muller C, Lebrenz H, Cnockaert MC, Müller WR, Swings J (2003) Denitrification and pesticide elimination in drinking water treatment with the biodegradable polymer poly(ε-caprolactone) (PCL). Acta Hydrochim Hydrobiol 31:195–203

    Article  CAS  Google Scholar 

  • Boley A, Unger B, Müller WR, Kuch B, Deger A (2006) Biological drinking water treatment for nitrate and pesticide (endosulfan) elimination. Water Sci Technol 6:123–127. doi:10.2166/ws.2006.786

    Article  CAS  Google Scholar 

  • Brenner A, Argaman Y (1992) Effect of feed composition, aerobic volume fraction and recycle rate on nitrogen removal in the single-sludge system. Water Res 24:1041–1049. doi:10.1016/0043-1354(90)90127-R

    Article  Google Scholar 

  • Brettar I, Labrenz M, Flavier S, Botel J, Kuosa H, Christen R (2006) Identification of a Thiomicrospira denitrificans like Epsilonproteobacterium as a catalyst for autotrophic denitrification in the central Baltic sea. Appl Environ Microbiol 72:1364–1372. doi:10.1128/AEM.72.2.1364-1372.2006

    Article  CAS  Google Scholar 

  • Brezonik PL (1977) Denitrification in natural waters. Progress in Water Technology 8:373–392

  • Burghate SP, Ingole NW (2014) Biological denitrification - a Review. J Environ Sci Comput Sci Eng Technol 14:009–028

    Google Scholar 

  • Cevaal JN, Suratt WB, Burke JE (1995) Nitrate removal and water quality improvements with reverse osmosis for Brighton, Colorado. Desalination 103:101–111. doi:10.1016/0011-9164(95)00091-7

    Article  CAS  Google Scholar 

  • Chang CC, Tseng SK, Huang HK (1999) Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment. Bioresour Technol 69:53–58. doi:10.1016/S0960-8524(98)00168-0

    Article  CAS  Google Scholar 

  • Chaplin BP, Reinhard M, Schneider WF, Schüth C, Shapley JR, Strathmann TJ, Werth CJ (2012) Critical review of Pd-based catalytic treatment of priority contaminants in water. Environ Sci Technol 46:3655–3670. doi:10.1021/es204087q

    Article  CAS  Google Scholar 

  • Chen D, Yang K, Wang H (2014a) Effects of important factors on hydrogen-based autotrophic denitrification in a bioreactor. Desalin Water Treat 57. doi: 10.1080/19443994.2014.986533

  • Chen D, Yang K, Wang H, Lv B (2014b) Nitrate removal from groundwater by hydrogen-fed autotrophic denitrification in a bio-ceramsite reactor. Water Sci Technol 69:2417–2422. doi:10.2166/wst.2014.167

    Article  CAS  Google Scholar 

  • Chen D, Dai T, Wang H, Yang K (2015) Nitrate removal by a combined bioelectrochemical and sulfur autotrophic denitrification (CBSAD) system at low temperatures. Desalin Water Treat 57:1–7. doi:10.1080/19443994.2015.1101024

    Article  CAS  Google Scholar 

  • Cheng IF, Muftikian R, Fernando Q, Korte N (1997) Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35:2689–2695. doi:10.1016/S0045-6535(97)00275-0

    Article  CAS  Google Scholar 

  • Chintala R, Mollinedo J, Schumacher TE, Malo DD, Papiernik S, Clay DE, Kumar S, Gulbrandson DW (2013) Nitrate sorption and desorption by biochars produced from microwave pyrolysis. Micropor Mesopor Mat 179:250–257. doi:10.1016/j.micromeso.2013.05.023

    Article  CAS  Google Scholar 

  • Chiu YC, Chung MS (2003) Determination of optimal COD/nitrate ratio for biological denitrification. Int Biodeter Biodegr 51:43–49. doi:10.1016/S0964-8305(02)00074-4

    Article  CAS  Google Scholar 

  • Chung J, Amin K, Kim S, Yoon S, Kwon K, Bae W (2014) Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor. Water Res 58:169–178. doi:10.1016/j.watres.2014.03.071

    Article  CAS  Google Scholar 

  • Claus G, Kutzner HJ (1985b) Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans. Appl Microbiol Biotechnol 22:283–288. doi:10.1007/BF00252031

    Article  CAS  Google Scholar 

  • Conlon WJ, Blandon FA, Moody J (1995) Cost comparison of treatment alternatives for the removal of nitrates and DBCP from Southern California groundwater. Desalination 103:89–100. doi:10.1016/0011-9164(95)00090-9

    Article  CAS  Google Scholar 

  • Dahnke K, Moneta A, Veuger B, Soetaert K, Middelburg JJ (2012) Balance of assimilative and dissimilative nitrogen processes in a diatom-rich tidal flat sediment. Biogeosciences 9:4059–4070. doi:10.5194/bg-9-4059-2012

    Article  CAS  Google Scholar 

  • Darbi A, Viraraghavan T, Butler R, Corkal D (2003) Pilot-scale evaluation of select nitrate removal technologies. J Environ Sci Heal A 38:703–1715. doi:10.1081/ESE-120022873

    Article  CAS  Google Scholar 

  • De-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627. doi:10.1016/j.biortech.2009.09.043

    Article  CAS  Google Scholar 

  • De-Bashan LE, Trejo A, VAR H, Hernandez JP, Bashan Y (2008) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight tolerant microalga with potential for removing ammonium from wastewater. Bioresour Technol 99:4980–4989. doi:10.1016/j.biortech.2007.09.065

    Article  CAS  Google Scholar 

  • de la Noue J, Laliberte G, Proulx D (1992) Algae and waste water. J Appl Phycol 4:247–254

  • Della Rocca C, Belgiorno V, Meric S (2005) Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration post-treatment. Water SA 31:229–236

    Article  CAS  Google Scholar 

  • Della Rocca C, Belgiorno V, Meric S (2006) A heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochem 41:1022–1028. doi:10.1016/j.procbio.2005.11.002

    Article  CAS  Google Scholar 

  • Della Rocca C, Belgiorno V, Meriç S (2007) Overview of in-situ applicable nitrate removal processes. Desalination 204:46–62. doi:10.1016/j.desal.2006.04.023

    Article  CAS  Google Scholar 

  • Devi MP, Swamy YV, Venkata Mohan S (2013) Nutritional mode influences lipid accumulation in microalgae with the function of carbon sequestration and nutrient supplementation. Bioresour Technol 142:278–286. doi:10.1016/j.biortech.2013.05.001

    Article  CAS  Google Scholar 

  • Di Capua F, Milone I, Lakaniemi AM, Lens NLP, Esposito G (2017) High-rate autotrophic denitrification in a fluidized-bed reactor at psychrophilic temperatures. Chem Eng J 313:591–598. doi:10.1016/j.cej.2016.12.106

    Article  CAS  Google Scholar 

  • Elgood Z, Robertson WD, Schiff SL, Elgood R (2010) Nitrate removal and greenhouse gas production in a stream-bed denitrifying bioreactor. Ecol Eng 36:1575–1580. doi:10.1016/j.ecoleng.2010.03.011

    Article  Google Scholar 

  • Eliassen R, Wyckoff BM, Tonkin CD (1995) Ion exchange for reclamation of reusable supplies. J Am Water Works Ass 57:1113–1122

    Article  Google Scholar 

  • Ergas SJ, Reuss AF (2001) Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor. J Water Supply: Res Technol Aqua 50:161–171

  • Fu G, Huangshen L, Guo Z, Zhou Q, Wu Z (2017) Effect of plant-based carbon sources on denitrifying microorganisms in a vertical flow constructed wetland. Bioresour Technol 224:214–221. doi:10.1016/j.biortech.2016.11.007

    Article  CAS  Google Scholar 

  • Gayle BP, Boardman GD, Sherrard JH, Benoit RE (1989) Biological denitrification of water. J Environ Eng 15:930–943. doi:10.1016/0043-1354(95)00242-1

    Article  Google Scholar 

  • Ghafari S, Hasan M, Aroua MK (2009) Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of hydrogenotrophic denitrifying bacteria. J Hazard Mater 162:1507–1513. doi:10.1016/j.jhazmat.2008.06.039

    Article  CAS  Google Scholar 

  • Giwa A, Dufour V, Al Marzooqi F, Al Kaabi M, Hasan SW (2017) Brine management methods: recent innovations and current status. Desalination 407:1–23. doi:10.1016/j.desal.2016.12.008

    Article  CAS  Google Scholar 

  • Gómez MA, González-López J, Hontoria-García E (2000) Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J Hazard Mater 80:69–80. doi:10.1016/S0304-3894(00)00282-X

    Article  Google Scholar 

  • Green M, Shelef G (1994) Treatment of nitrate contaminated groundwater for drinking purposes. In: Zoller U (ed) Groundwater contamination and control. Marcel Dekker Publishers, New York, pp 587–606

    Google Scholar 

  • Greenan CM, Moorman TB, Parkin TB, Kaspar TC, Jaynes DB (2009) Denitrification in wood chip bioreactors at different water flows. J Environ Qual 38:1664–1671. doi:10.2134/jeq2008.0413

    Article  CAS  Google Scholar 

  • Gross H, Schnoor G, Treuter K (1986) Nitrate removal from groundwater by autotrophic microorganisms. J Water Supply Rest T 4:11–21

    Google Scholar 

  • Guy KA, Xu H, Yang JC, Werth CJ, Shapley JR (2009) Catalytic nitrate and nitrite reduction with Pd−cu/PVP colloids in water: composition, structure, and reactivity correlations. J Phys Chem C 113:8177–8185. doi:10.1021/jp810049y

    Article  CAS  Google Scholar 

  • Hamlin HJ, Michaels JT, Beaulaton CM, Graham WF, Dutt W, Steinbach P, Losordo TM, Schrader KK, Main KL (2008) Comparing denitrification rates and carbon sources in commercial scale up flow denitrification biological filters in aquaculture. Aquac Eng 38:79–92. doi:10.1016/j.aquaeng.2007.11.003

    Article  Google Scholar 

  • Hao Z, Xu X, Wang D (2005) Reductive denitrification of nitrate by scrap iron filings. J Zhejiang Univ-Sc B 6:182–186. doi:10.1631/jzus.2005.B0182

    Article  CAS  Google Scholar 

  • Haugen KS, Semmens MJ, Novak PJ (2002) A novel in situ technology for the treatment of nitrate contaminated groundwater. Water Res 36:3497–3506. doi:10.1016/S0043-1354(02)00043-X

  • Hell F, Lahnsteiner J, Frischherz H, Baumgartner G (1998) Experience with full scale electrodialysis for nitrate and hardness removal. Desalination 117:173–180. doi:10.1016/S0011-9164(98)00088-5

    Article  CAS  Google Scholar 

  • Her JJ, Huang JS (1995) Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour Technol 54:45–51. doi:10.1016/0960-8524(95)00113-1

    Article  CAS  Google Scholar 

  • Hill AR (1996) Nitrate removal in stream riparian zones. J Environ Qual 25:743–755

    Article  CAS  Google Scholar 

  • Hiraishi A, Khan ST (2003) Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol 61:103–109. doi:10.1007/s00253-002-1198-y

    Article  CAS  Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and non-suspended algae. J Phycol 34:757–763. doi:10.1046/j.1529-8817.1998.340757.x

    Article  CAS  Google Scholar 

  • Hu Q, Westerhoff P, Vermaas W (2000) Removal of nitrate from groundwater by cyanobacteria: quantitative assessment of factors influencing nitrate uptake. Appl Environ Microbiol 66:133–139. doi:10.1128/AEM.66.1.133-139.2000

    Article  CAS  Google Scholar 

  • Huang YH, Zhang TC (2004) Effects of low pH on nitrate reduction by iron powder. Water Res 38:2631–2642. doi:10.1016/j.watres.2004.03.015

    Article  CAS  Google Scholar 

  • Jensen VB, Darby JL, Seidel C, Gorman C (2014) Nitrate in potable water supplies: alternative management strategies. Crit Rev Env Sci Tec 44:2203–2286. doi:10.1080/10643389.2013.828272

    Article  CAS  Google Scholar 

  • Jeris JS, Beer C, Mueller JA (1974) High rate biological denitrification using a granular fluidized. J Water Poll Cont Fed 46:2118–2128

    CAS  Google Scholar 

  • Ju X, Field JA, Sierra-Alvarez R, Salazar M, Bentley H, Bentley R (2007) Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur. Biotechnol Bioeng 96:1073–1082. doi:10.1002/bit.21197

    Article  CAS  Google Scholar 

  • Justin P, Kelly DP (1978a) Growth kinetics of Thiobacillus denitrificans in anaerobic and aerobic chemostat culture. J Gen Microbiol 107:123–130. doi:10.1099/00221287-107-1-123

    Article  CAS  Google Scholar 

  • Kalaruban M, Loganathan P, Shim WG, Kandasamy J, Naidu G, Nguyen TV, Vigneswaran S (2016) Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: batch and fluidised-bed adsorption studies. Sep Purif Technol 158:62–70. doi:10.1016/j.seppur.2015.12.022

    Article  CAS  Google Scholar 

  • Kamp A, de Beer D, Nitsch JL, Lavik G, Stief P (2011) Diatoms respire nitrate to survive dark and anoxic conditions. P Natl Acad Sci USA 108:5649–5654. doi:10.1073/pnas.1015744108

    Article  Google Scholar 

  • Kapoor A, Viraraghavan T (1997) Nitrate removal from drinking water-review. J Environ Eng 123:371–380. doi:10.1061/(ASCE)0733-9372

    Article  CAS  Google Scholar 

  • Karanasios KA, Vasiliadou IA, Pavlou S, Vayenas DV (2010) Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180:20–37. doi:10.1016/j.jhazmat.2010.04.090

    Article  CAS  Google Scholar 

  • Kelso BHL, Smith RV, Laughlin RJ (1999) Effects of carbon substrates on nitrite accumulation in freshwater sediments. Appl Environ Microbiol 65:61–66

    CAS  Google Scholar 

  • Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS (2014) Nitrate transport and signalling in Arabidopsis. J Exp Bot 65:789–798. doi:10.1093/jxb/eru001

    Article  CAS  Google Scholar 

  • Kumar M, Chakraborty S (2006) Chemical denitrification of water by zero-valent magnesium powder. J Hazard Mater 135:112–121. doi:10.1016/j.jhazmat.2005.11.031

    Article  CAS  Google Scholar 

  • Kurt M, Dunn IJ, Bourne JR (1987) Biological denitrification of drinking water using autotrophic organisms with hydrogen in a fluidized-bed biofilm bioreactor. Biotechnol Bioeng 29:493–501. doi:10.1002/bit.260290414

    Article  CAS  Google Scholar 

  • Lee K, Lee CG (2001) Effect of light/dark cycles on wastewater treatment by microalgae. Biotechnol Bioprocess Eng E 6:194–199. doi:10.1007/BF02932550

    Article  CAS  Google Scholar 

  • Lee KC, Rittmann BE (2002) Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res 36:2040–2052. doi:10.1016/S0043-1354(01)00425-0

    Article  CAS  Google Scholar 

  • Lew B, Stief P, Beliavski M, Ashkenazi A, Svitlica O, Khan A, Tarre S, de Beer D, Green M (2012) Characterization of denitrifying granular sludge with and without the addition of external carbon source. Bioresour Technol 124:413–420. doi:10.1016/j.biortech.2012.08.049

    Article  CAS  Google Scholar 

  • Li P, Zuo J, Xing W, Tang L, Ye X, Li Z, Yuan L, Wang K, Zhang H (2013) Starch/polyvinyl alcohol blended materials used as solid carbon source for tertiary denitrification of secondary effluent. J Environ Sci 25:1972–1979. doi:10.1016/S1001-0742(12)60259-9

    Article  CAS  Google Scholar 

  • Liessens J, Germonpre R, Beernaert S, Verstraete W (1993) Removing nitrate with a methylotrophic fluidized bed: technology and operating performance. J Am Water Works Ass 84:144–154

    Article  Google Scholar 

  • Lin Y-F, Jing S-R, Lee D-Y, Chang Y-F, Shih K-C (2008) Nitrate removal from groundwater using constructed wetlands under various hydraulic loading rates. Bioresour Technol 99:7504–7513. doi:10.1016/j.biortech.2008.02.017

    Article  CAS  Google Scholar 

  • Lina Y-F, Jinga S-R, Wangb T-W, Leea D-Y (2002) Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environ Pollut 119:413–420

    Article  Google Scholar 

  • Liu X, Clifford DA (1996) Ion exchange with denitrified brine reuse. J Am Water Works Ass 88:88–99

    Article  CAS  Google Scholar 

  • Liu LH, Koenig A (2002) Use of limestone for pH control in autotrophic denitrification: batch experiments. Process Biochem 37:885–893. doi:10.1016/s0032-9592(01)00302-8

    Article  CAS  Google Scholar 

  • Liu K, Li J, Qiao H, Lin A, Wang G (2012) Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater. Bioresour Technol 114:26–32. doi:10.1016/j.biortech.2012.02.003

    Article  CAS  Google Scholar 

  • Luk GK, Au-Yeung WC (2002) Experimental investigation on the chemical reduction of nitrate from groundwater. Adv Environ Res 6:441–453

    Article  CAS  Google Scholar 

  • Lyubchenko OA, Mogilevich NF, Gvozdyak PI (1996) Microbial nitrification and sewage treatment. J Water Chem Techno 18:98–112

    CAS  Google Scholar 

  • Malaeb L, Ayoub GM (2011) Reverse osmosis technology for water treatment: state of the art review. Desalination 267:1–8

    Article  CAS  Google Scholar 

  • Mansell BO, Schroeder ED (2002) Hydrogenotrophic denitrification in a microporous membrane bioreactor. Water Res 36:4683–4690

    Article  CAS  Google Scholar 

  • Matějů V, Čižinská S, Krejčí J, Janoch T (1992) Biological water denitrification – a review. Enzyme Microb Tech 14:170–183. doi:10.1016/0141-0229(92)90062-S

    Article  Google Scholar 

  • Maxwell E, Peterson WE, CM O’Reilly (2017) Enhanced nitrate reduction within a constructed wetland system: Nitrate removal within groundwater flow. Wetlands: 1–10. doi: 10.1007/s13157-017-0877-5

  • McAdam EJ, Judd SJ (2007) Denitrification from drinking water using a membrane bioreactor: chemical and biochemical feasibility. Water Res 41:4242–4250. doi:10.1016/j.watres.2007.05.059

    Article  CAS  Google Scholar 

  • McAdam EJ, Judd SJ (2008) Biological treatment of ion-exchange brine regenerate for re-use: a review. Sep Purif Technol 62:264–272

    Article  CAS  Google Scholar 

  • Midaoui AE, Elhannouni F, Taky M, Chay L, Menkouchi Sahli MA, Echihabi L, Hafsi M (2002) Optimization of nitrate removal operation from ground water by electrodialysis. Sep Purif Technol 29:235–244

    Article  Google Scholar 

  • Mohseni-Bandpi A, Elliott DJ, Zazouli MA (2013) Biological nitrate removal processes from drinking water supply-a review. J Environ Health Sci Eng 11:35. doi:10.1186/2052-336X-11-35

    Article  CAS  Google Scholar 

  • Moon HS, Chang SW, Nam K, Choe J, Kim JY (2006) Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification. Environ Pollut 144:802–807. doi:10.1016/j.envpol.2006.02.020

    Article  CAS  Google Scholar 

  • Moon HS, Shin DY, Nam K, Kim JY (2008) A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier. Chemosphere 73:723–728. doi:10.1016/j.chemosphere.2008.06.065

    Article  CAS  Google Scholar 

  • Moreno B, Gómez MA, González-López J, Hontoria E (2005) Inoculation of a submerged filter for biological denitrification of nitrate polluted groundwater: a comparative study. J Hazard Mater 117:141–147. doi:10.1016/j.jhazmat.2004.09.027

    Article  CAS  Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815. doi:10.1016/j.watres.2006.06.011

    Article  CAS  Google Scholar 

  • Nataraj SK, Hosamani KM, Aminabhavi TM (2006) Electrodialytic removal of nitrates and hardness from simulated mixtures using ion-exchange membranes. J Appl Polym Sci 99:1788–1794. doi:10.1002/app.22710

    Article  CAS  Google Scholar 

  • Oh SE, Yoo YB, Young JC, Kim IS (2001) Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions. J Biotechnol 92:1–8. doi:10.1016/S0168-1656(01)00344-3

    Article  CAS  Google Scholar 

  • Ovez B (2006) Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source. Process Biochem 41:1289–1295. doi:10.1016/j.procbio.2005.12.030

    Article  CAS  Google Scholar 

  • Park S, Yu J, Byun I, Cho S, Park T, Lee T (2011) Microbial community structure and dynamics in a mixotrophic nitrogen removal process using recycled spent caustic under different loading conditions. Bioresour Technol 102:7265–7271. doi:10.1016/j.biortech.2011.04.091

    Article  CAS  Google Scholar 

  • Pérez-González A, Urtiaga AM, Ibáñez R, Ortiz I (2012) State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res 46:267–283. doi:10.1016/j.watres.2011.10.046

    Article  CAS  Google Scholar 

  • Petrovic A, Simonic M (2015) Effect of Chlorella sorokiniana on the biological denitrification of drinking water. Environ Sci Pollut Res 22:5171–5183. doi:10.1007/s11356-014-3745-3

    Article  CAS  Google Scholar 

  • Pirsaheb M, Khosravi T, Sharafi K, Mouradi M (2015) Comparing operational cost and performance evaluation of electrodialysis and reverse osmosis systems in nitrate removal from drinking water in Golshahr, Mashhad. Desalin Water Treat 57:12. doi:10.1080/19443994.2015.1004592

    Article  CAS  Google Scholar 

  • Rautenbach R, Kopp W, Opbergen G, Hellekes R (1987) Nitrate reduction of well water by reverse osmosis and electrodialysis – studies on plant performance and costs. Desalination 65:241–258. doi:10.1016/0011-9164(87)90137-8

    Article  CAS  Google Scholar 

  • Riaño B, Hernández D, García-González MC (2012) Microalgal-based systems for wastewater treatment: effect of applied organic and nutrient loading rate on biomass composition. Ecol Eng 49:112–117

    Article  Google Scholar 

  • Richardson D, Felgate H, Watmough N, Thomson A, Baggs E (2009) Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle – could enzymic regulation hold the key? Trends Biotechnol 27:388–397. doi:10.1016/j.tibtech.2009.03.009

    Article  CAS  Google Scholar 

  • Rivetta MO, Bussb SR, Morganb P, Smith JWN, Bemmentb CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42(16):4215–4232. doi:10.1016/j.watres.2008.07.020

    Article  CAS  Google Scholar 

  • Robertson WD, Blowes DW, Ptacek CJ, Cherry JA (2000) Long term performance of in situ reactive barriers for nitrate remediation. Groundwater 38:689–695. doi:10.1111/j.1745-6584.2000.tb02704.x

    Article  CAS  Google Scholar 

  • Ruppenthal S (2004) Treating water high in nitrate to supplement supply. J Am Water Works Ass 96:68–70

    Article  CAS  Google Scholar 

  • Sahinkaya E, Dursun N (2012) Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement. Chemosphere 89:144–149. doi:10.1016/j.chemosphere.2012.05.029

    Article  CAS  Google Scholar 

  • Sahinkaya E, Yurtsever A, Aktas O, Ucar D, Wang Z (2015) Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor. Chem Eng J 268:180–186. doi:10.1016/j.cej.2015.01.045

    Article  CAS  Google Scholar 

  • Sahinkaya E, Yurtsever A, Ucar D (2016) A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr (VI) and nitrate reduction. J Hazard Mater. doi:10.1016/j.jhazmat.2016.02.032

  • Sakakibara Y, Kuroda M (1993) Electric prompting and control of denitrification. Biotechnol Bioeng 42:535–537. doi:10.1002/bit.260420418

    Article  CAS  Google Scholar 

  • Samatya S, Kabay N, Yuksel U, Arda M, Yuksel M (2006) Removal of nitrate from aqueous solution by nitrate selective ion exchangerResins. React Funct Polym 66:1206–1214. doi:10.1016/j.reactfunctpolym.2006.03.009

    Article  CAS  Google Scholar 

  • Schipper LA, Robertson WD, Gold AJ, Jaynes DB, Cameron SC (2010a) Denitrifying bioreactors-an approach for reducing nitrate loads to receiving waters. Ecol Eng 36:1532–1543. doi:10.1016/j.ecoleng.2010.04.008

    Article  Google Scholar 

  • Schoeman JJ, Steyn A (2003) Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination 155:15–26. doi:10.1016/S0011-9164(03)00235-2

    Article  CAS  Google Scholar 

  • Seitzinger SP, Mayorga E, Bouwman AF et al (2010) Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochem Cy 24. doi:10.1029/2009GB003587

  • Sharma SK, Sobti RC (2012) Nitrate removal from ground water: a review. E-J Chem 9:1667–1675. doi:10.1155/2012/154616

    Article  CAS  Google Scholar 

  • Shrimali M, Singh KP (2001) New methods of nitrate removal from water. Environ Pollut 112:351–359. doi:10.1016/S0269-7491(00)00147-0

    Article  CAS  Google Scholar 

  • Sierra-Alvarez R, Beristan-Cardoso R, Salazar M, Gomez J, Razo-Flores E, Field JA (2007) Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Res 41:1253–1262. doi:10.1016/j.watres.2006.12.039

    Article  CAS  Google Scholar 

  • Smith RL, Buckwalter SP, Repert DA, Miller DN (2005) Small-scale hydrogen-oxidizing denitrifying bioreactor for treatment of nitrate-contaminated drinking water. Water Res 39:2014–2023. doi:10.1016/j.watres.2005.03.024

    Article  CAS  Google Scholar 

  • Soares MIM (2000) Biological denitrification of groundwater. Water Air Soil Poll 123:183–193. doi:10.1023/A:1005242600186

    Article  CAS  Google Scholar 

  • Sun Y, Nemati M (2012) Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters. Bioresour Technol 114:207–216. doi:10.1016/j.biortech.2012.03.061

    Article  CAS  Google Scholar 

  • Tsai HH, Ravindran V, Williams MD, Pirbazari M (2004) Forecasting the performance of membrane bioreactor process for groundwater denitrification. J Environ Eng Sci 3:507–521. doi:10.1139/s04-013

    Article  CAS  Google Scholar 

  • USEPA (1987) Estimated national occurrence and exposure to nitrate and nitrite in public drinking water supplies. Washington, DC, United States Environmental Protection Agency, Office of Drinking Water

    Google Scholar 

  • USEPA (2013) Introduction to in situ bioremediation of groundwater. United States Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • van der Hoek JP, van der Ven PJM, Klapwijk A (1988) Combined ion exchange/biological denitrification for nitrate removal from ground water under different process conditions. Water Res 22:679–684. doi:10.1016/0043-1354(88)90178-9

  • Vasiliadou IA, Pavlou S, Vayenas DV (2006) A kinetic study of hydrogenotrophic denitrification. Process Biochem 41:1401–1408. doi:10.1016/j.procbio.2006.02.002

    Article  CAS  Google Scholar 

  • Verhoeven JTA, Arheimer B, Yin C, Hefting MM (2006) Regional and global concerns over wetlands and water quality. Trends Ecol Evol 21:96–103. doi:10.1016/j.tree.2005.11.015

    Article  Google Scholar 

  • Volokita M, Belkin S, Abeliovich A, Soares MIM (1996b) Biological denitrification of drinking water using newspaper. Water Res 30:965–971. doi:10.1016/0043-1354(95)00242-1

    Article  CAS  Google Scholar 

  • Waki T, Murayma KI, Kawato Y, Ichikawa K (1980) Transient characteristics of Paracoccus denitrificans with changes between aerobic and anaerobic conditions. J Ferment Technol 58:243–249

    CAS  Google Scholar 

  • Wang X, Xing L, Qiu T, Han M (2013) Simultaneous removal of nitrate and pentachlorophenol from simulated groundwater using a biodenitrification reactor packed with corncob. Environ Sci Pollut Res 20:2236–2243. doi:10.1007/s11356-012-1092-9

    Article  CAS  Google Scholar 

  • Wang Z, Fei X, He S, Huang J, Zhou W (2017) Comparison of heterotrophic and autotrophic denitrification processes for treating nitrate-contaminated surface water. Sci Total Environ 579:1706–1714. doi:10.1016/j.scitotenv.2016.11.194

    Article  CAS  Google Scholar 

  • Weigelhofer G, Hein T (2015) Efficiency and detrimental side effects of denitrifying bioreactors for nitrate reduction in drainage water. Environ Sci Pollut Res 22:13534–13545. doi:10.1007/s11356-015-4634-0

    Article  CAS  Google Scholar 

  • WHO (1985b) Health hazards from nitrate in drinking-water. Report on a WHO meeting, Copenhagen, 5–9 march 1984. WHO Regional Office for Europe, Copenhagen (Environmental Health Series No. 1)

    Google Scholar 

  • Zhang Y, Chen Y, Chen G (2003) Chemical denitrification of nitrate from groundwater. Huan Jing Ke Xue 24:9–12

    Google Scholar 

  • Zhao Y, Feng C, Wang Q, Yang Y, Zhang Z, Sugiura N (2011) Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor. J Hazard Mater 192:1033–1039. doi:10.1016/j.jhazmat.2011.06.008

    Article  CAS  Google Scholar 

  • Zhou W, Sun Y, Wu B, Zhang Y, Huang M, Miyanaga T, Zhang Z (2011) Autotrophic denitrification for nitrate and nitrite removal using sulfur limestone. J Environ Sci 23:1761–1769. doi:10.1016/S1001-0742(10)60635-3

    Article  CAS  Google Scholar 

  • Zou G, Papirio S, Lakaniemi AM, Ahoranta SH, Puhakka JA (2016) High rate autotrophic denitrification in fluidized-bed biofilm reactors. Chem Eng J 284:1287–1294. doi:10.1016/j.cej.2015.09.074

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the University of Tehran under grant number 8104956/1/03, KRIBB Research Initiative Program, and the Advanced Biomass R&D Center (ABC) of the Global Frontier Program funded by the Ministry of Science, ICT, and Future Planning (2010-0029723).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad-Hossein Sarrafzadeh or Hee-Mock Oh.

Additional information

Responsible editor: Gerald Thouand

Highlights

• Technical and cost comparison of several approaches of nitrate removal from drinking water, including physicochemical and biological techniques

• Expression of the salient features of autotrophic nitrate removal, especially hydrogenotrophic denitrification over other methods

• Refer to the application of microalgae-based water treatment as a nature-inspired approach for water treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezvani, F., Sarrafzadeh, MH., Ebrahimi, S. et al. Nitrate removal from drinking water with a focus on biological methods: a review. Environ Sci Pollut Res 26, 1124–1141 (2019). https://doi.org/10.1007/s11356-017-9185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9185-0

Keywords

Navigation