Skip to main content
Log in

Valve movement of three species of North American freshwater mussels exposed to elevated carbon dioxide

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Freshwater mussels are at-risk taxa and may be exposed to high levels of carbon dioxide (CO2) because of the potential use of CO2 to control the movement of invasive aquatic fish species. One potential behavioral response to a change in the partial pressure of CO2 (pCO2) may be altered valve movement. In this study, three species of mussels were fitted with modified sensors and exposed to two regimes of pCO2 to define thresholds of impaired valve movement. The first experiment demonstrated that Pyganodon grandis were much more tolerant to rising pCO2 relative to Lampsilis siliquoidea (acute closure at ∼200,000 μatm in comparison to ∼80,000 μatm). The second experiment consisted of monitoring mussels for 6 days and exposing them to elevated pCO2 (∼70,000 μatm) over a 2-day period. During exposure to high pCO2, Lampsilis cardium were open for nearly the entire high pCO2 period. Conversely, P. grandis were closed for most of the period following exposure to high pCO2. For L. siliquoidea, the number of closures decreased nearly 40-fold during high pCO2. The valve movement responses observed suggest species differences, and exposure to elevated pCO2 requires a reactive response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bolker BM, Brooks ME, Clark CJ et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  Google Scholar 

  • Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25

    Google Scholar 

  • Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:839–842. doi:10.1038/ngeo1294

    Article  CAS  Google Scholar 

  • Byrne RA, Gnaiger E, McMahon RF, Dietz TH (1990) Behavioral and metabolic responses to emersion and subsequent reimmersion in the freshwater bivalve, Corbicula fluminea. Biol Bull 178:215–259

    Article  Google Scholar 

  • Campbell DC, Serb JM, Buhay JE et al (2005) Phylogeny of North American amblemines (Bivalvia, Unionoida): prodigious polyphyly proves pervasive across genera. Invertebr Biol 124:131–164. doi:10.1111/j.1744-7410.2005.00015.x

    Article  Google Scholar 

  • Clingerman J, Bebak J, Mazik PM, Summerfelt ST (2007) Use of avoidance response by rainbow trout to carbon dioxide for fish self-transfer between tanks. Aquac Eng 37:234–251. doi:10.1016/j.aquaeng.2007.07.001

    Article  Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570

  • Cooper JE (2011) Anesthesia, analgesia, and euthanasia of invertebrates. ILAR J 52:196–204

    Article  CAS  Google Scholar 

  • Crawford JT, Stanley EH, Dornblaser MM, Striegl RG (2016) CO2 time series patterns in contrasting headwater streams of North America. Aquat Sci. doi:10.1007/s00027-016-0511-2

  • Cummings KS, Mayer CA (1992) Field guide to freshwater mussels of the Midwest. Illinois Natural History Survey Manual 5

  • Cupp AR, Erickson RA, Fredricks KT, et al. (2017) Responses of invasive silver and bighead carp to a carbon dioxide barrier in outdoor ponds. 305:297–305.

  • Donaldson MR, Amberg JJ, Adhikari S et al (2016) Carbon dioxide as a tool to deter the movement of invasive bigheaded carps. Trans Am Fish Soc 145:657–670. doi:10.1080/00028487.2016.1143397

    Article  CAS  Google Scholar 

  • Dowd WW, Somero GN (2013) Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air and seawater. J Exp Biol 216:502–514. doi:10.1242/jeb.076620

    Article  Google Scholar 

  • Famme P (1980) Effect of shell valve closure by the mussel Mytilus edulis L. on the rate of oxygen consumption in declining oxygen tension. Comp Biochem Physiol 67A:167–170

    Article  Google Scholar 

  • Hannan KD, Jeffrey JD, Hasler CT, Suski CD (2016a) Physiological responses of three species of unionid mussels to intermittent exposure to elevated carbon dioxide. Conservation Physiology 4:1–13. doi:10.1093/conphys/cow066

  • Hannan KD, Jeffrey JD, Hasler CT, Suski CD (2016b) The response of two species of unionid mussels to extended exposure to elevated carbon dioxide. Comp Biochem Physiol -Part A Mol Integr Physiol 201:173–181. doi:10.1016/j.cbpa.2016.07.009

    Article  CAS  Google Scholar 

  • Hannan KD, Jeffrey JD, Hasler CT, Suski CD (2016c) Physiological effects of short- and long-term exposure to elevated carbon dioxide on a freshwater mussel, Fusconaia flava. Can J Fish Aquat Sci 73:1538–1546. doi:10.1139/cjfas-2016-0083

    Article  CAS  Google Scholar 

  • Hasler CT, Butman D, Jeffrey JD, Suski CD (2016) Freshwater biota and rising pCO2? Ecol Lett 19:98–108. doi:10.1111/ele.12549

    Article  Google Scholar 

  • Jeffrey JD, Hannan KD, Hasler CT, Suski CD (2016) Molecular and whole-animal responses to elevated CO2 exposure in a freshwater mussel. J Comp Physiol B 187:87–101. doi:10.1007/s00360-016-1023-z

  • Johnson MS, Billett MF, Dinsmore KJ et al (2009) Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications. Ecohydrology 3:68–78. doi:10.1002/eco.95

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi:10.1111/j.1461-0248.2010.01518.x

    Article  Google Scholar 

  • Markich SJ, Brown PL, Jeffree RA, Lim RP (2000) Valve movement responses of Velesunio angasi (Bivalvia: Hyrdiidae) to manganese and uranium: an exception to the free ion activity model. Aquat Toxicol 51:155–175

    Article  CAS  Google Scholar 

  • McCorkle S, Shirley TC, Dietz TH (1979) Rhythms of activity and oxygen consumption in the common pond clam, Ligumia subrostrata (Say). Can J Zool 57:1960–1964

    Article  Google Scholar 

  • Nagai K, Honjo T, Go J et al (2006) Detecting the shellfish killer Heterocapsa circularisquama (Dinophyceae) by measuring bivalve valve activity with a Hall element sensor. Aquaculture 255:395–401. doi:10.1016/j.aquaculture.2005.12.018

    Article  Google Scholar 

  • Noatch MR, Suski CD (2012) Non-physical barriers to deter fish movements. Environ Rev 20:1–12. doi:10.1139/A2012-001

    Article  Google Scholar 

  • Norton-Griffiths M (1967) Some ecological aspects of the feeding behaviour of the oystercatcher Haematopus ostralegus on the edible mussel Mytilus edulis. Ibis 109:412–424

  • Pennak RW (1989) Fresh-water invertebrates of the United States: protozoa to mollusca, 3rd edn. Wiley, New York

    Google Scholar 

  • Phillips J, McKinley G, Bennington V et al (2015) The potential for CO2-induced acidification in freshwater: a Great Lakes case study. Oceanography 25:136–145. doi:10.5670/oceanog.2015.37

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing, Vienna, Austria. URL http://www.R-project.org/

  • Reynaud S, Leclercq N, Romaine-Lioud S et al (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668

    Article  Google Scholar 

  • Ricciardi A, Rasmussen JB (1999) Extinction rates of North American freshwater fauna. Conserv Biol 13:1220–1222

    Article  Google Scholar 

  • Robson AA, Garcia De Leaniz C, Wilson RP, Halsey LG (2010) Behavioural adaptations of mussels to varying levels of food availability and predation risk. J Molluscan Stud 76:348–353. doi:10.1093/mollus/eyq025

    Article  Google Scholar 

  • Robson AA, Thomas GR, Garcia De Leaniz C, Wilson RP (2009) Valve gape and exhalant pumping in bivalves: optimization of measurement. Aquat Biol 6:191–200. doi:10.3354/ab00128

    Article  Google Scholar 

  • Robson AA, Wilson RP, Garcia de Leaniz C (2007) Mussels flexing their muscles: a new method for quantifying bivalve behaviour. Mar Biol 151:1195–1204. doi:10.1007/s00227-006-0566-z

    Article  Google Scholar 

  • Romero LM, Dickens MJ, Cyr NE (2009) The reactive scope model—a new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389. doi:10.1016/j.yhbeh.2008.12.009

    Article  Google Scholar 

  • Salánki J (1963) The effect of serotonin and catecholamines on the nervous control of periodic activity in fresh-water mussel (Anodonta cygnea). Comp Biochem Physiol 8:163–171

    Article  Google Scholar 

  • Schick JM, Gnaiger E, Widdows J et al (1986) Activity and metabolism in the mussel Mytilus edulis L. during intertidal hypoxia and aerobic recovery. Physiol Biochem Zool 59:627–642

    Google Scholar 

  • Schick JM, Widdows J, Gnaiger E (1988) Calorimetric studies of behavior, metabolism and energetics of sessile intertidal animals. Am Zool 28:161–181

    Article  Google Scholar 

  • Strayer D, Downing J, Haag W et al (2004) Changing perspectives on pearly mussels, North America’s most imperiled animals. Bioscience 54:429–439

    Article  Google Scholar 

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J North Am Benthol Soc 29:344–358. doi:10.1899/08-171.1

    Article  Google Scholar 

  • Summerfelt ST, Sharrer MJ (2004) Design implication of carbon dioxide production within biofilters contained in recirculating salmonid culture systems. Aquac Eng 32:171–182

    Article  Google Scholar 

  • Therneau T (2015) A package for survival analysis in S. R package version 2.38, https://CRAN.R-project.org/package=survival

  • Torsten H, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  Google Scholar 

  • Vaughn CC, Nichols SJ, Spooner DE (2008) Community and foodweb ecology of freshwater mussels. J North Am Benthol Soc 27:409–423. doi:10.1899/07-058.1

    Article  Google Scholar 

  • Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Bio Ecol 366:187–197. doi:10.1016/j.jembe.2008.07.024

    Article  Google Scholar 

  • Williams JD, Warren ML, Cummings KS et al (1993) Conservation status of freshwater mussels of the United States and Canada. Fisheries 18:6–22. doi:10.1577/1548-8446(1993)018<0006:csofmo>2.0.co;2

    Article  Google Scholar 

  • Wilson R, Reuter P, Wahl M (2005) Muscling in on mussels: new insights into bivalve behaviour using vertebrate remote-sensing technology. Mar Biol 147:1165–1172. doi:10.1007/s00227-005-0021-6

    Article  Google Scholar 

  • Zandee DI, Holwerda DA, Kluytmans JH, De Zwaan A (1985) Metabolic adaptations to environmental anoxia in the intertidal bivalve mollusc Mytilus edulis L. Netherlands J Zool 36:322–343

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Illinois Department of Natural Resources, and the United States Geological Survey, through funds provided by the United States Environmental Protection Agency’s Great Lakes Restoration Initiative. J. Tiemann, K. Cummings, J. Tix, C. Sullivan, and J. Sherwood provided valuable help collecting mussels. We would also like to thank A. Wright for providing valuable help with mussel husbandry and laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caleb T. Hasler.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasler, C.T., Hannan, K.D., Jeffrey, J.D. et al. Valve movement of three species of North American freshwater mussels exposed to elevated carbon dioxide. Environ Sci Pollut Res 24, 15567–15575 (2017). https://doi.org/10.1007/s11356-017-9160-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9160-9

Keywords

Navigation