Skip to main content

Advertisement

Log in

Response of green mussels (Perna viridis) subjected to chlorination: investigations by valve movement monitoring

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Perna viridis Linnaeus (1758) is a major foulant in the cooling water systems of electric power stations located on the East coast of India. Though chlorination is considered an effective fouling control measure, the strategy may fail in the case of bivalve mussels, due to the ability of the mussels to close their shells and still survive for extended periods of time. In a given power station, continuous low dose (exomotive) chlorination (0.2 ± 0.1 mg l−1) is practiced to control biofouling. Laboratory experiments were carried out to assess the mortality and valve movement response of Perna viridis exposed to chlorine, using a Mosselmonitor®. All size groups tested showed progressive reduction in valve opening upon chlorination. However, continuous dosing of chlorine concentration as high as 1.0 mg l−1 was required for sustained and complete valve closure response in this mussel. At lower concentration (0.7 mg l−1), the mussels were able to open their shells and feed. Sustained valve closure resulted in physiological stress to the mussels due to reduced feeding, subsequently leading to death. Time to 100% mortality was dependent on the size of the mussels. At 1.0 mg l−1 chlorine residual, smaller size group (30–50 mm) mussels showed 100% mortality in 79.3 h, while larger groups (50–70 mm and 70–90 mm) took 152 h and 243 h, respectively. Frequency of valve opening was high in smaller size group mussels (30–50 mm), compared with larger groups (70–90 mm). Even though the time taken for killing was size-dependent, frequency of valve opening and time period between successive openings were found to be characteristic of individual mussels. The observations provide new insight into the response of bivalve mussels to continuous chlorination in the context of biofouling control and point to the need to adopt pragmatic strategies to prevent mussel spat settlement rather than killing of adult mussels, thereby reducing environmental burden due to chlorine residuals. Usage of target-specific biocidal strategies (intermittent/pulse dosing) or alternative biocides (chlorine dioxide) may help mitigate green mussel fouling in tropical cooling water systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida, C., Pereira, C. G., Gomes, T., Cardoso, C., Bebianno, M. J., & Cravo, A. (2013). Genotoxicity in two bivalve species from a coastal lagoon in the south of Portugal. Marine Environmental Research, 89, 29–38. https://doi.org/10.1016/j.marenvres.2013.04.008

    Article  CAS  Google Scholar 

  • Beyer, J., Aarab, N., Tandberg, A. H., Ingvarsdottir, A., Bamber, S., Borseth, J. F., Camus, L., & Velvin, R. (2013). Environmental harm assessment of a waste water discharge from Hammerfest LNG: a study with biomarkers in mussels (Mytilus sp.) and Atlantic cod (Gadusmorhua). Marine Pollution Bulletin, 69:28–37. https://doi.org/10.1016/j.marpolbul.2013.01.001

  • Borcherding, J. (1994). The “Dreissena Monitor” - Improved evaluation of dynamic limits for the establishment of alarm thresholds during toxicity tests and for continuous water control. In: Freshwater field tests for hazard assessment of chemicals (Eds: Hill IA., Heinbach F, Leeuwangh P, and Matthiesen P) Lewis Publishers Boca Raton. 477-484.

  • Cataldo, D., Boltovskoy, D., & Pose, M. (2003). Toxicity of chlorine and three non-oxidizing molluscicides to the invasive pest mussel Limnoperna fortunei. Journal of the American Water Works Association, 95, 66–78.

    Article  CAS  Google Scholar 

  • Chavan, P., Kumar, R., Kirubagaran, R., & Venugopalan, V. P. (2016). Chlorination-induced genotoxicity in the mussel Perna viridis: assessment by single cell gel electrophoresis (comet) assay. Ecotoxicology Environmental Safety, 130, 295–302. https://doi.org/10.1016/j.ecoenv.2016.04.034

    Article  CAS  Google Scholar 

  • de Zwart, D., Kramer, K. J. M., & Jenner, H. A. (1995). Practical experiences with the biological early warning system “Mosselmonitor”. Environment Toxicology and Water Quality, 10: 237–247. https://doi.org/10.1002/tox.2530100403

  • Gunasingh, M., Jesudoss, K. S., Nandakumar, K., Satpathy, K. K., Azariah, J., & Nair, K. V. K. (2002). Lethal and sub-lethal effects of chlorination on green mussel Perna viridis in the context of biofouling control in a power plant cooling water system. Marine Environmental Research., 53, 65–76. https://doi.org/10.1016/S0141-1136(01)00110-6

    Article  Google Scholar 

  • Hartmann, J. T., Beggel, S., Auerswald, K., Stoeckle, B., & Geist, J. (2016). Establishing mussel behaviour as a biomarker in ecotoxicology. Aquatic Toxicology, 170, 279–288. https://doi.org/10.1016/j.aquatox2015.06.014

    Article  CAS  Google Scholar 

  • Jenner, H. A. (1985). Chlorine minimization in macrofouling control in The Netherlands. In: Water Chlorination: chemistry, environmental impact and health effects (Eds. Jolly RL, Bull RJ, Davies W.P, Katz S, Roberts MH. & Jacobs VA), Vol. 5:.1425-1433. Lewis Publishers, London.

  • Jenner, H. A., Noppert, F., & Sikking, T. (1989). A new system for detection of valve movement response of bivalves. KEMA Scientific Technical Report, 7(2), 91–98.

    CAS  Google Scholar 

  • Jenner, H. A., Whitehouse, J. W., Taylor, C. J. T., & Khalanski, M. (1998). Cooling water management in European Power Stations: Biology and Control of Fouling. Hydroecologie Appliquee, Tome 10 Vol 1-2, 225pp.

  • Jensen, A. C. (1982). Sensitivity of Mytilus edulis (L) to chlorination. PhD thesis, Department of Oceanography, University of Southampton, UK.

  • Khalanski, M., & Bordet, F. (1980). Effects of chlorination on marine mussels. In: Water Chlorination: chemistry,environmental impact and health effects (Eds: Jolly RL, Brungs WA, and Cumming RB), Vol. 3: p557-567. Ann Arbor Science Publishers, Ann Arbor, MI.

  • Kramer, K. J. M., Jenner, H. A., & de Zwart, D. (1989). The valve movement response of mussels: a tool in biological monitoring. Hydrobiologia, 188(189), 433–443.

    Article  Google Scholar 

  • Lewis, B. G. (1984). Mussel control and chlorination. CERL Report no. TPRD/L/2810/R85,pp. 1-33. Central Electricity Research Laboratories, Leatherhead, UK.

  • Masilamoni, J. G. (1998). Studies on biofouling and its control in nuclear power plant with special reference to lethal and sub-lethal effects of different antifouling techniques on green mussel Perna viridis (L.). PhD thesis, Department of Zoology, University of Madras, Tamil Nadu, India.

  • Masilamoni, G. J., Jesudoss, K. S., Nandakumar, K., Satpathy, K. K., Azariah, J., & Nair, K. V. K. (2002). Lethal and sub-lethal effects of chlorination on green mussel Perna viridis in the context of biofouling control in a power plant cooling water system. Marine Environmental Research, 53, 65–76. https://doi.org/10.1016/S0141-1136(01)00110-6

    Article  CAS  Google Scholar 

  • Mosselmonitor®.(2005). An early warning system for online monitoring. From http://www.mosselmonitor.nl/01_engels/01_starteng.htm

  • Murthy, P. S., Veeramani, P., Mohamed Ershath, M. I., & Venugopalan, V. P. (2011). Biofouling evaluation in the seawater cooling circuit of an operating coastal power plant. Power Plant Chemistry, 13(6): 314-319.

  • Nair, K. V. K., Murugan, P., & Eswaran, M. S. (1988). Macrofoulants in Kalpakkam coastal waters, East coast of India. Indian Journal of Marine science, 17, 341–343.

    Google Scholar 

  • Nair, K. V. K. (1999). Marine biofouling and its control with particular reference to condenser-cooling circuits of power plants – an overview. Journal of Indian Institute of Science, 79, 497 – 511.

  • Nicholson, S., & Lam, P. K. S. (2005). Pollution monitoring in southeast Asia using biomarkers in the mytilid mussel Perna viridis (Mytilidae: Bivalvia). Environmental International, 31(1), 121–132. https://doi.org/10.1016/j.envint.2004.05.007

    Article  CAS  Google Scholar 

  • Phillips, D. J. H. (1977). Use of biological indicator organisms to monitor trace-metal pollution in marine and estuarine environments - review. Environmental Pollution, 13(4), 281–317.

    Article  CAS  Google Scholar 

  • Prutz, W. A. (1996). Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Archives in Biochemistry and Biophysics, 332, 110–120.

    Article  CAS  Google Scholar 

  • Rajagopal, S., Venugopalan, V. P., Nair, K. V. K., & Azariah, J. (1991). Biofouling and its control in a tropical coastal power station: A case study. Biofouling, 3, 325–338. https://doi.org/10.1080/08927019109378185

  • Rajagopal, S., Venugopalan, V. P., Nair, K. V. K., & Azariah, J. (1994). Response of green mussel, Perna viridis (L.) to chlorine in the context of power plant biofouling control. Marine Freshwater and Behaviour Physiology, 25, 261–274. https://doi.org/10.1080/10236249509378922

  • Rajagopal, S., Nair, K. V. K., Azariah, J., Vander Velde, G., & Jenner, H. A. (1996). Chlorination and mussel control in the cooling conduits of a tropical coastal power station. Marine Environmental Research, 41(2), 201–221.

    Article  CAS  Google Scholar 

  • Rajagopal, S. Van., Der Velde, G., & Jenner, H. A. (1997). Shell valve movement response of dark false mussel Mytilopsis leucophaeta to chlorination. Water Research, 31(12), 3187–3190. https://doi.org/10.1016/S0043-1354(97)00163-2

    Article  CAS  Google Scholar 

  • Rajagopal, S., Vander Velde, G., Van Der Gaag, M., & Jenner, H. A. (2002a). Sub lethal responses of zebra mussel, Dreissena polymorpha to low-level chlorination: an experimental study. Biofouling, 18, 95–104. https://doi.org/10.1080/08927010290000787

    Article  CAS  Google Scholar 

  • Rajagopal, S. Vander., Velde, G., Van Der Gaag, M., & Jenner, H. A. (2002b). Control of brackish water fouling mussel Mytilopsis leucophaeata (Conrad) with sodium hypochlorite. Archives of Environmental Contamination and Toxicology, 43, 296–300. https://doi.org/10.1007/s00244-002-1203-6

    Article  CAS  Google Scholar 

  • Rajagopal, S., Van Der Velde, G., Van Der Gaag, M., & Jenner, H. A. (2003a). How effective is intermittent chlorination control adult mussels fouling in cooling water systems? Waters research, 37, 329–338. https://doi.org/10.1016/s0043-1354(02)00270-1

    Article  CAS  Google Scholar 

  • Rajagopal, S., Venugopalan, V. P., Van Der Velde, G., & Jenner, H. A. (2003b). Tolerance of five species of marine mussels to continuous chlorination. Marine Environmental Research, 55, 277–291. https://doi.org/10.1016/S0141-1136(02)00272-6

    Article  CAS  Google Scholar 

  • Rajagopal, S., Venugopalan, V. P., Van der Velde, G., & Jenner, H. A. (2006). Greening of the coast: what makes the mussel Perna viridis so successful? Aquatic Ecology, 40, 273–297. https://doi.org/10.1007/s10452-006-9032-8

    Article  CAS  Google Scholar 

  • Rajagopal, S., Jenner, H. A., Venugopalan, V. P., Khalanski, M. (2012). Biofouling Control: Alternatives to Chlorine. In: Operational and Environmental Consequences of Large Industrial Cooling Water Systems. Springer pp 227-271. https://doi.org/10.1007/978-1-4614-1698-2

  • Redmond, K. J., Berry, M., Pampinin, D. M., & Anderson, O. K. (2017). Valve-gape behaviour of mussels (Mytilus edulis) exposed to disperse crude oil as an environmental monitoring endpoint. Marine Pollution Bulletin, 117, 330–339. https://doi.org/10.1016/j.marpolbul.2017.02.005

    Article  CAS  Google Scholar 

  • Satpathy, K. K., Mohanty, A. K., Sahu, G., Biswas, S., Prasad, M. V. R. & Selvanayagam, M. (2010). Biofouling and its control in seawater cooled power plant cooling water system – a review. INTECH Open Science Publications, pp. 388. https://doi.org/10.5772/9912

  • Theede, H., Ponat, A., Hiroki, K., & Schlieper, C. (1969). Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide. Marine Biology, 2, 325–337.

    Article  CAS  Google Scholar 

  • USEPA. (2005). Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: Metal mixtures (cadmium copper, lead, nickel, silver, and zinc). EPA-600-R-Q2-011, Washington DC.

  • USEPA. (2009). National Recommended Water Quality Criteria.Office of Water and Office of Science and Technology.Section 304 (a) of the Clean Water Act (CWA). Available at: http://water.epa.gov/scitech/swguidance/standards/current/in10/12/2012

  • Venugopalan, V. P. (2018). Industrial Seawater Cooling Systems under Threat from the Invasive Green Mussel Perna viridis. ASEAN Journal on Science & Technology for Development, 35, 1–2. https://doi.org/10.29037/ajstd.475

  • Verween, A., Vincx, M., & Degraer, S. (2009). Comparative toxicity of chlorine and peracetic acid in the biofouling control of Mytilopsis leucophaeata and Dreissena polymorpha embryos (Mollusca, Bivalvia). International Biodeterioration and Biodegradation, 63, 523–528. https://doi.org/10.1016/j.ibiod.2009.03.002

    Article  CAS  Google Scholar 

  • White, G. C. (1972). Hand book of chlorination. Von Nostr and Reinhold.

    Google Scholar 

  • Widdows, J., & Johnson, D. (1988). Physiological energetics of Mytilus edulis: scope for growth. Marine Ecology Progress Series, 46, 113–121. https://doi.org/10.3354/meps046113

    Article  CAS  Google Scholar 

  • Zar, J. H. (1999). Biostatistical Analysis (4th ed.). Prentice Hall.

    Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the Station Director, Madras Atomic Power Station (MAPS) for providing the necessary facilities and logistic support. The work was part of collaborative project between Water and Steam Chemistry Division (WSCD), BARC and National Institute of Ocean Technology (NIOT) Chennai.

Funding

Srinivas Venkatnarayanan was supported financially by NIOT by means of a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sriyutha Murthy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatnarayanan, S., Murthy, P.S., Kirubagaran, R. et al. Response of green mussels (Perna viridis) subjected to chlorination: investigations by valve movement monitoring. Environ Monit Assess 193, 202 (2021). https://doi.org/10.1007/s10661-021-09008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09008-y

Keywords

Navigation