Skip to main content

Advertisement

Log in

Effect of tannery effluent on oxidative status of brain structures and liver of rodents

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Oxidative stress has been considered as a central mechanism of toxicity induced by xenobiotics. Previously, it was demonstrated that mice exposed to tannery effluent showed an anxiety-like behavior, without any comparable behavioral effects in rats. The aim of the present study was to investigate the impact of tannery wastewater on oxidative status in in vitro and in vivo assays with two mammal species, mice and rats. Specifically, homogenates of two brain areas and the liver were incubated with tannery wastewater; reactive species and lipid peroxidation levels and antioxidant enzyme activities were detected. In addition, the effects of in vivo exposure of mice to tannery effluents on and lipid peroxidation levels and the total reactive antioxidant capacity in brain areas and liver. Brain areas, the hippocampus and frontal cortex, and the liver of mice exposed to tannery wastewater showed oxidative stress. Our data suggest that divergent species-dependent hepatic enzymes adaptations, such as glutathione peroxidase and glutathione S-transferase activities, induced by tannery effluent could explain previous behavioral findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams JD, Wang B, Klaidman LK et al (1993) New aspects of brain oxidative stress induced by tert-butylhydroperoxide. Free Radic Biol Med 15:195–202. doi:10.1016/0891-5849(93)90059-4

    Article  CAS  Google Scholar 

  • Aquim PM (2009) Management in tanneries: integrated and efficient use of water (in Portuguese).

  • Åström A, Månér S, Depierre JW (1987) Induction of liver microsomal epoxide hydrolase, UDP-glucuronyl transferase and cytosolic glutathione transferase in different rodent species by 2-acetylaminofluorene or 3-methylcholanthrene. Xenobiotica 17:155–163

  • Avila-Costa MR, Colín-Barenque L, Fortoul TI et al (2009) Motor impairments in an oxidative stress model and its correlation with cytological changes on rat striatum and prefrontal cortex. Int J Neurosci 108:193–200

  • Bannerman D, Rawlins JN, McHugh S et al (2004) Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28:273–283. doi:10.1016/j.neubiorev.2004.03.004

    Article  CAS  Google Scholar 

  • Bergamini CM, Gambetti S, Dondi A, Cervellati C (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10:1611–1626. doi:10.2174/1381612043384664

    Article  CAS  Google Scholar 

  • Bertoldi K, Spindler C, dos Moysés FS et al (2012) Effect of landfill leachate on oxidative stress of brain structures and liver from rodents: modulation by photoelectrooxidation process. Ecotoxicol Environ Saf 84:319–324. doi:10.1016/j.ecoenv.2012.08.001

    Article  CAS  Google Scholar 

  • Bhattacharya P, Ghosh S, Mukhopadhyay A (2013) Combination technology of ceramic microfiltration and biosorbent for treatment and reuse of tannery efluent from different streams: response of defence system in Euphorbia sp. Int J Recycl Org Waste Agric 2:19

    Article  Google Scholar 

  • Bhattacharya P, Swarnakar S, Mukhopadhyay A, Ghosh S (2016) Exposure of composite tannery effluent on snail, Pila globosa: a comparative assessment of toxic impacts of the untreated and membrane treated effluents. Ecotoxicol Environ Saf 126:45–55. doi:10.1016/j.ecoenv.2015.12.021

    Article  CAS  Google Scholar 

  • Board PG, Menon D (2013) Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta - Gen Subj 1830:3267–3288. doi:10.1016/j.bbagen.2012.11.019

    Article  CAS  Google Scholar 

  • Bouayed J, Rammal H, Younos C, Soulimani R (2007) Positive correlation between peripheral blood granulocyte oxidative status and level of anxiety in mice. Eur J Pharmacol 564:146–149. doi:10.1016/j.ejphar.2007.02.055

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Brocardo PS, Pandolfo P, Takahashi RN et al (2005) Antioxidant defenses and lipid peroxidation in the cerebral cortex and hippocampus following acute exposure to malathion and/or zinc chloride. Toxicology 207:283–291. doi:10.1016/j.tox.2004.09.012

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

  • Cassano A, Drioli E, Molinari R (1997) Recovery and reuse of chemicals in unhairing, degreasing and chromium tanning processes by membranes. Desalination 113:251–261. doi:10.1016/S0011-9164(97)00137-9

    Article  CAS  Google Scholar 

  • Chan LM, Lowes S, Hirst BH (2004) The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci 21:25–51. doi:10.1016/j.ejps.2003.07.003

    Article  CAS  Google Scholar 

  • Chen J, Wang Y, Zhang H, Zhao X (2010) Overview on the studies of nitrate pollution in groundwater. Prog Geogr 25:34–44. doi:10.11820/DLKXJZ.2006.01.004

    Google Scholar 

  • Dasuri K, Zhang L, Keller JN (2013) Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 62:170–185. doi:10.1016/j.freeradbiomed.2012.09.016

    Article  CAS  Google Scholar 

  • Davidson RJ (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51:68–80. doi:10.1016/S0006-3223(01)01328-2

    Article  Google Scholar 

  • Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18. doi:10.1042/bj3240001

    Article  CAS  Google Scholar 

  • El-Demerdash FM (2011) Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brain exposed to organophosphate and pyrethroid insecticides. Food Chem Toxicol 49:1346–1352. doi:10.1016/j.fct.2011.03.018

    Article  CAS  Google Scholar 

  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266. doi:10.1006/abbi.2001.2292

  • Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayioisti MI (2009) Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois. Mutat Res Toxicol Environ Mutagen 674:3–22. doi:10.1016/j.mrgentox.2008.11.012

  • Giannetti B, Bonilla S, Almeida CMV (2004) Developing eco-technologies: a possibility to minimize environmental impact in Southern Brazil. J Clean Prod 12:361–368. doi:10.1016/S0959-6526(03)00033-7

    Article  Google Scholar 

  • Guimarães ATB et al (2016) Anxiety and memory deficits induced by tannery effluent in C57BL/6J female mice. Environ Sci Pollut Res 23:25323–25334. doi:10.1007/s11356-016-7746-2

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57:715S–724S

    CAS  Google Scholar 

  • Han J, Won E-J, Hwang D-S et al (2013) Effect of copper exposure on GST activity and on the expression of four GSTs under oxidative stress condition in the monogonont rotifer, Brachionus koreanus. Comp Biochem Physiol Part C Toxicol Pharmacol 158:91–100. doi:10.1016/j.cbpc.2013.05.006

    Article  CAS  Google Scholar 

  • Hayes JD, McLellan LI (2009) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31:273–300

    Article  Google Scholar 

  • Hovatta I, Tennant RS, Helton R et al (2005) Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 438:662–666. doi:10.1038/nature04250

    Article  CAS  Google Scholar 

  • Igarashi T, Satoh T, Ueno K, Kitagawa H (1983) Species difference in glutathione level and glutathione related enzyme activities in rats, mice, guinea pigs and hamsters. Aust J Pharm 6:941–949. doi:10.1248/bpb1978.6.941

    CAS  Google Scholar 

  • Jaeger N, Moraes JP, Klauck CR, Gehlenb G, Rodrigues MAS, Ziulkoski AL (2015) Cytotoxicity assays to evaluate tannery effluents treated by photoelectrooxidation. Braz J Biol 75:53–61 http://dx.doi.org/10.1590/1519-6984.01713suppl

    Article  Google Scholar 

  • Jamakala O, Rani UA (2015) Amelioration effect of zinc and iron supplementation on selected oxidative stress enzymes in liver and kidney of cadmium-treated male albino rat. Toxicol Int 22:1–9. doi:10.4103/0971-6580.172289

    Article  CAS  Google Scholar 

  • Landi S (2000) Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res 463:247–283. doi:10.1016/S1383-5742(00)00050-8

  • LeBel CP, Ali SF, McKee M, Bondy SC (1990) Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 104:17–24. doi:10.1016/0041-008X(90)90278-3

    Article  CAS  Google Scholar 

  • Lissi E, Pascual C, del Castillo MD (1992) Luminol luminescence induced by 2,20-azo-bis(2-amidinopropane) thermolysis. Free Radic Res Commun 17:299–311

    Article  CAS  Google Scholar 

  • Lissi E, Salim-Hanna M, Pascual C, del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18:153–158

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurementwith the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Ma J, Ding Z, Wei G et al (2009) Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang River, Northwest China. J Environ Manag 90:1168–1177. doi:10.1016/j.jenvman.2008.05.007

    Article  CAS  Google Scholar 

  • Maradonna F, Polzonetti V, Bandiera SM, Migliarini B, Carnevali O (2004) Modulation of the hepatic CYP1A1 system in the marine fish Gobius niger, exposed to xenobiotic compounds. Environ Sci Technol 38(23):6277–6282. doi:10.1021/es049786h

    Article  CAS  Google Scholar 

  • Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M (2008) Glutathione peroxidase family—an evolutionary overview. FEBS J 275:3959–3970. doi:10.1111/j.1742-4658.2008.06542.x

    Article  CAS  Google Scholar 

  • Moysés FS, Bertoldi K, Spindler C et al (2014) Exposition to tannery wastewater did not alter behavioral and biochemical parameters in Wistar rats. Physiol Behav 129:160–166. doi:10.1016/j.physbeh.2014.02.022

  • Muthuswamy AD, Vedagiri K, Ganesan M, Chinnakannu P (2006) Oxidative stress-mediated macromolecular damage and dwindle in antioxidant status in aged rat brain regions: role of l-carnitine and dl-α-lipoic acid. Clin Chim Acta 368:84–92. doi:10.1016/j.cca.2005.12.010

    Article  CAS  Google Scholar 

  • Oral R, Meriç S, De Nicola E, Petruzzelli D, Della Rocca C et al (2007) Multi-species toxicity evaluation of a chromium-based leather tannery wastewater. Desalination 211(1):48–57. doi:10.1016/j.desal.2006.02.084

    Article  CAS  Google Scholar 

  • Prabakaran M, Binuramesh C, Steinhagen D, Dinakaran Michael R (2007) Immune response in the tilapia, Oreochromis mossambicus on exposure to tannery effluent. Ecotoxicol Environ Saf 68:372–378. doi:10.1016/j.ecoenv.2006.11.016

    Article  CAS  Google Scholar 

  • Ramos-Gomez M, Kwak M-K, Dolan PM et al (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci 98:3410–3415. doi:10.1073/pnas.051618798

    Article  CAS  Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16. doi:10.1042/bj3600001

    Article  CAS  Google Scholar 

  • Siddique HR, Gupta SC, Dhawan A et al (2005) Genotoxicity of industrial solid waste leachates in Drosophila melanogaster. Environ Mol Mutagen 46:189–197. doi:10.1002/em.20149

    Article  CAS  Google Scholar 

  • Siddique HR, Gupta SC, Mitra K et al (2008) Adverse effect of tannery waste leachates in transgenic Drosophila melanogaster: role of ROS in modulation of Hsp70, oxidative stress and apoptosis. J Appl Toxicol 28:734–748. doi:10.1002/jat.1332

  • Siqueira IR, Vanzella C, Bianchetti P et al (2011) Anxiety-like behaviour in mice exposed to tannery wastewater: the effect of photoelectrooxidation treatment. Neurotoxicol Teratol 33:481–484. doi:10.1016/j.ntt.2011.05.008

    Article  CAS  Google Scholar 

  • Tagliari KC, Cecchini R, Rocha JAV, Vargas VMF (2004) Mutagenicity of sediment and biomarkers of oxidative stress in fish from aquatic environments under the influence of tanneries. Mutat Res Toxicol Environ Mutagen 561:101–117. doi:10.1016/j.mrgentox.2004.04.001

    Article  CAS  Google Scholar 

  • Tang JYM, Busetti F, Charrois JWA, Escher BI (2014) Which chemicals drive biological effects in wastewater and recycled water? Water Res 60:289–299. doi:10.1016/j.watres.2014.04.043

    Article  CAS  Google Scholar 

  • Tare V, Gupta S, Bose P (2012) Case studies on biological treatment of tannery effluents in India. J Air Waste Manag Assoc 53:976–982. doi:10.1080/10473289.2003.10466250

    Article  Google Scholar 

  • Tickner JA, Schettler T, Guidotti T et al (2001) Health risks posed by use of di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: a critical review. Am J Ind Med 39:100–111. doi:10.1002/1097-0274(200101)39:1<100::AID-AJIM10>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  • Tigini V, Giansanti P, Mangiavillano A et al (2011) Evaluation of toxicity, genotoxicity and environmental risk of simulated textile and tannery wastewaters with a battery of biotests. Ecotoxicol Environ Saf 74:866–873. doi:10.1016/j.ecoenv.2010.12.001

    Article  CAS  Google Scholar 

  • Wendel A, Feuerstein S (1981) Drug-induced lipid peroxidation in mice—I. Modulation by monooxegenase activity, glutathione and selenium status. Biochem Pharmacol 30:2513–2520. doi:10.1016/0006-2952(81)90576-1

    Article  CAS  Google Scholar 

  • Yagi K (1998) Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol Biol 108:101–106. doi:10.1385/0-89603-472-0:101

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian funding agencies: Fundação de Amparo à Pesquisa do Rio Grande do Sul—PROCOREDES III; FAPERGS/1981-2551/13-4; FUNADESP/UNIVATES; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES (Dr. F. S. Moysés); Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Dr. I.R. Siqueira; Dr. M.A.S. Rodrigues; Dr. S. Stülp; Dr. F. S. Moysés; Dr. V.R. Elsner; Dr. K. Bertoldi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionara Rodrigues Siqueira.

Ethics declarations

The NIH “Guide for the Care and Use of Laboratory Animals” (NIH publication No. 80-23, revised 1996) was followed in all experiments that were conducted at room temperature (22 ± 1 °C). All experiments were approved by the Local Institutional Research Committee).

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Moysés, F., Bertoldi, K., Elsner, V.R. et al. Effect of tannery effluent on oxidative status of brain structures and liver of rodents. Environ Sci Pollut Res 24, 15689–15699 (2017). https://doi.org/10.1007/s11356-017-9149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9149-4

Keywords

Navigation