Skip to main content
Log in

Toxicity of nickel to soil microbial community with and without the presence of its mineral collectors—a calorimetric approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The toxicity of nickel and three of its main collectors, sodium isopropyl xanthate (SIPX), sodium ethyl xanthate (SEX), and potassium ethyl xanthate (PEX) to soil microbial activity, was analyzed, individually and as a binary combination of nickel and each of the collectors. The investigation was performed through the microcalorimetric analysis method. For the single chemicals, all power-time curves exhibited lag, exponential, stationary, and death phases of microbial growth. Different parameters exhibited a significant adverse effect of the analyzed chemicals on soil microbial activity, with a positive relationship between the inhibitory ratio and the chemical dose (p < 0.05 or p < 0.01). A peak power reduction level of 24.23% was noted for 50 μg g−1 soil in the case of Ni while for the mineral collectors, only 5 μg g−1 soil and 50 μg g−1 soil induced a peak power reduction level of over 35 and 50%, respectively, in general. The inhibitory ratio ranged in the following order: PEX > SEX > SIPX > Ni. Similar behavior was observed with the mixture toxicity whose inhibitory ratio substantially decreased (maximum decrease of 38.35%) and slightly increased (maximum increase of 15.34%), in comparison with the single toxicity of mineral collectors and nickel, respectively. The inhibitory ratio of the mixture toxicity was positively correlated (p < 0.05 or p < 0.01) with the total dose of the mixture. In general, the lesser and higher toxic effects are those of mixtures containing SIPX and PEX, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahemad M (2012) Implication of bacterial resistance against heavy metals in bioremediation: a review. IIOABJ 3(3):39–46

    CAS  Google Scholar 

  • Aislabie J, Deslippe JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand-conditions and trends. Manaaki Whenua Press, Lincoln, pp 143–161

    Google Scholar 

  • Ajiao AT, Yakubu SE, Umoh VJ, Ameh JB (2014) Enzymatic studies and mineralization potential of Burkholderia cepacia and Corynebacterium kutscheri isolated from refinery sludge. J Microbiol Res 4(2):29–42

    Google Scholar 

  • Alboghobeish H, Tahmourespour A, Doudi M (2014) The study of nickel resistant bacteria (NiRB) isolated from wastewaters polluted with different industrial sources [J]. J Environ Health Sci Eng 12(1):305–314

    Google Scholar 

  • Aleksandra DC, Urszula B (2008) The impact of nickel on human health; review paper. J Elem 13(4):685–696

    Google Scholar 

  • Arbabi M, Golshani N (2016) Removal of copper ions CU (II) from industrial wastewater: a review of removal methods. Int J Epidemiol Res 3(3):283–293

    Google Scholar 

  • Ashworth J, Rodgers GA, Briggs GG (1979) Xanthates as inhibitors of fertilizer nitrogen transformation in soil. Chem Ind (Lond) 3:90–92

    Google Scholar 

  • Aysha OS, Hamsavathani V, Valli S (2015) Biodegradation of xenobiotics: a review on petroleum hydrocarbons and pesticide degradation. World J Pharm Pharm Sci 4(11):1791–1808

    Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243

    CAS  Google Scholar 

  • Barałkiewicz D, Siepak J (1999) Chromium, nickel and cobalt in environmental samples and existing legal norms. Polish J Environ Studies 8(4):201–208

    Google Scholar 

  • Bararunyeretse P, Yao J, Dai Y et al (2016) Toxic effect of two kinds of mineral collectors on soil microbial richness and activity: analysis by microcalorimetry, microbial count, and enzyme activity assay. Environ Sci Pollut Res. doi:10.1007/s11356-016-7905-5

    Article  Google Scholar 

  • Barja I, Núñez L (1999) Microcalorimetric measurements of the influence of glucose concentration on microbial activity in soils. Soil Biol Biochem 31:441–447

    CAS  Google Scholar 

  • Barros N, Feijoo S, Simoni A et al (2001) Interpretation of the metabolic enthalpy change, ΔHmet, calculated for microbial growth reactions in soils. J Therm Anal Calorim 63:577–588

    CAS  Google Scholar 

  • Beck JF, Bradbury CM, Connors AJ et al (1981) Nitrite as antidote for acute hydrogen sulfide intoxication? Am Ind Hyg Assoc J 42(11):805–809

    CAS  Google Scholar 

  • Beezer AE et al (1999) Pharmaceutical microcalorimetry: applications to long-term stability studies. Int J Pharm 179(2):159–165

    CAS  Google Scholar 

  • Bose P, Bose MA, Kumar S (2002) Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc, and cyanide. Adv Environ Res 7(1):179–195

    CAS  Google Scholar 

  • Braissant O, Wirz D, Göpfert B et al (2010a) Biomedical use of isothermal microcalorimeters. Sensors 10(10):9369–9383

    CAS  Google Scholar 

  • Braissant O, Wirz D, Göpfert B, Daniels AU (2010b) Use of isothermal microcalorimetry to monitor microbial activities. Minireview. FEMS Microbial Lett 303:1–8

    CAS  Google Scholar 

  • Bravo D, Braissant O, Solokhina A et al (2011) Use of an isothermal microcalorimetry assay to characterize microbial oxalotrophic activity. FEMS Microbiol Ecol 78(2):266–274

    CAS  Google Scholar 

  • Bulatovic M (2007) Handbook of flotation reagents: Chemistry, theory and practice. In: Flotation of Sulfide Ores, first ed, vol. 1. Elsevier Science, The Netherlands, 446 p

  • Campaniella L, Cardarelli E et al (1986) Mercury removal from petrochemical wastes. Water Res 20(1):63–65

    Google Scholar 

  • Canadian Council of Ministers of Environment (CCME) (2015) Scientific criteria document for Canadian soil quality guidelines for the protection of environment and human health: Nickel. PN 1540

  • Cempel M, Nikel G (2006) Nickel: a review of its sources and environmental toxicology. Polish J Environ Stud 15(3):375–382

    CAS  Google Scholar 

  • Chabuk C, Witika LK (2009) Optimization of the baluba east ores treatment. Afr J Sci Technol 1(4):747–757

    Google Scholar 

  • Chakraborty S, Saha N, Roy SS (2016) Role of microbes in soil formation and aggregation. Innov Farm 1(1):11–14

    Google Scholar 

  • Chang YK, Chang JE, Lin TT, Hsu YM (2002) Integrated copper-containing wastewater treatment using xanthate process. J Hazard Mater 94(1):89–99

    CAS  Google Scholar 

  • Chau YK, Kulikovsky-Cordeiro OTR (1995) Occurrence of nickel in the Canadian environment. Environ Rev 3:95–120

    CAS  Google Scholar 

  • Chaudri AM, McGrath SP, Giller KE et al (1993) Enumeration of indigenous rhizobium leguminosarum biovar trifolii in soils previously treated with metal-contaminated sewage sludge. Soil Biol Biochem 25:301–309

    CAS  Google Scholar 

  • Chen ZS, Tsai CC, Tsui CC (1999) Proposed regulation of soil pollutants in Taiwan soils. Proceedings of 6th workshop on Soil pollution and prevention: Soil remediation techniques on Soils Contaminated by Organic Pollutants. Taipei, Taiwan, pp 169–207

  • Chen HL, Yao J, Wang F et al (2009) Study on the toxic effects of diphenol compounds on soil microbial activity by a combination of methods. J Hazard Mater 167:846–851

    CAS  Google Scholar 

  • Chen HL, Yao J et al (2010) Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus Subtilis in aquatic environment. Sci Total Environ 408:1043–1049

    CAS  Google Scholar 

  • Chen HL, Zhuang R, Yao J et al (2014) Short-term effect of aniline on soil microbial activity: a combined study by isothermal microcalorimetry, glucose analysis, and enzyme assay techniques. Environ Sci Pollut Res Int 21(1):674–683

    CAS  Google Scholar 

  • Coogan TP, Latta DM, Snow ET et al (1989) Toxicity and carcinogenicity of nickel compounds. Crit Rev Toxicol 19(4):341–384

    CAS  Google Scholar 

  • Costa M (1995) Model for the epigenetic mechanism of action of non-genotoxic carcinogens. Am J Clin Nutr 61(3suppl):666S–669s

    CAS  Google Scholar 

  • Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects & oxidative stress. Indian J Med Res 128:412–425

    CAS  Google Scholar 

  • Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42:35–56

    CAS  Google Scholar 

  • Deo N, Natarajan KA (1998) Biological removal of some flotation collector reagents from aqueous solutions and mineral surfaces. Miner Eng 11(8):717–738

    CAS  Google Scholar 

  • Deshmukh KK (2012) Evaluation of soil fertility status from Sangamner area, Ahmednagar district, Maharashtra, India. Rasayan J Chem 5(3):398–406

    CAS  Google Scholar 

  • Dong YB, Lin H, Fu KB et al (2011) Effect of flotation reagents on bioleaching of low-grade copper tailings by Acidthiobacillus ferrooxidans. Zhongguo Youse Jinshu Xuebao/Chin J Nonferrous Metals 21(9):2291–2297

    CAS  Google Scholar 

  • Edwards CA, Subler S et al (1995) Essential criteria for selecting bioindicator species, processes, or systems to assess the environmental impact of chemicals on soil ecosystems. In: Van Straalen NM, Krivolutskii DA (eds) New approaches to the development of Bioindicator Systems for Soil Pollution. Kluwer Academic Publishers, Amsterdam, pp 67–84

    Google Scholar 

  • Eisler R (1998) Nickel hazards to fish, wildlife, and invertebrates: a synoptic review. Biological science report USGS/BRD/BSR-1998-0001-Contaminat Hazard Reviews, Report 34

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128(4):501–523

    CAS  Google Scholar 

  • Fu P, Feng J, Yang T et al (2015) Comparison of alkyl xanthates degradation in aqueous solution by the O3, and UV/O3, processes: efficiency, mineralization, and ozone utilization. Miner Eng 81(1):128–134

    CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals, and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    CAS  Google Scholar 

  • Ghazali FM, Rahman RNZA, Salleh AB et al (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54(1):61–67

    CAS  Google Scholar 

  • Gianfreda L, Rao MA (2008) Interactions between xenobiotics and microbial and enzymatic soil activity. Crit Rev Environ Sci Technol 38(4):61–67

    Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial process in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Google Scholar 

  • Grandy SA, Strickland MS, Lauber CL et al (2009) The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma 150:278–286

    CAS  Google Scholar 

  • Green VS, Stott DE, Diack M (2006) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38(4):693–701

    CAS  Google Scholar 

  • Guo Z et al (2016) Effect of three typical sulfide mineral flotation collectors on soil microbial activity. Environ Sci Pollut Res Int 23(8):7425–7436

    CAS  Google Scholar 

  • Harasim P, Filipek T (2015) Nickel in the environment. J Elem 20(2):525–534. doi:10.5601/jelem.2014.19.3.651

    Article  Google Scholar 

  • Hartwig A, Kruger I, Beyersmann D (1994) Mechanisms in nickel genotoxicity: the significance of interactions with DNA repair. Toxico1 Lett 72:353–358

    CAS  Google Scholar 

  • Hawley JR (1972) The use, characteristics, and toxicity of mine-mill reagents in the province of Ontario. Ministry of the environment, Ontario, p 244

    Google Scholar 

  • Herrera-Urbina R (2003) Recent developments and advances in formulations and applications of chemical reagents used in froth flotation. Miner Process Extr Metall Rev 24(2):139–182

    Google Scholar 

  • Hertzberg RC, MacDonell MM (2002) Synergy, and other ineffective mixture risk definitions. Sci Total Environ 288:31–42

    CAS  Google Scholar 

  • Higgins SJ (1995) Nickel 1993. Coord Chem Rev 146:115–201

    CAS  Google Scholar 

  • Higuera-Guisset J, Rodríguez-Viejo J et al (2005) Calorimetry of microbial growth using a thermopile based microreactor. Thermochim Acta 427:187–191

    CAS  Google Scholar 

  • Holden PA, Firestone MK (1997) Soil microorganisms in soil cleanup: how can we improve our understanding? J EnvironQual 26(1):32–40

    CAS  Google Scholar 

  • Homagai PL et al (2009) Studies on functionalization of apple waste for heavy metal treatment. Nepal J Sci Technol 10:135–139

    Google Scholar 

  • Hussein KA, Joo JH (2013) Heavy metal resistance of bacteria and its impact on the production of antioxidant enzymes. Afr J Microbiol Res 7(20):2288–2296. doi:10.5897/AJMR12.1764 http://www.academicjournals.org/AJMR

    Article  Google Scholar 

  • Iyaka YA (2011) Nickel in soils: a review of its distribution and impacts. Sci Res Essays 6(33):6774–6777. doi:10.5897/SREX11.035

    Article  Google Scholar 

  • Kasprzak HS (1987) Nickel advances in modern environmental. Toxicology 11:145–183

    CAS  Google Scholar 

  • Kasprzak KS, Sunderman FW, Salnikow K (2003) Nickel carcinogenesis Mutat res. Mutat Res Fundam Mol Mech Mutagen 533:67–97

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Google Scholar 

  • Khoshdast H, Sam A (2011) Flotation Frothers: review of their classifications, properties and preparation. Open Miner Process J 4:25–44

    Google Scholar 

  • Koenigbauer MJ (1994) Pharmaceutical applications of microcalorimetry. Pharm Res 11(6):777–783

    CAS  Google Scholar 

  • Kohad VP (1998) Flotation of sulfide ores-HZL experience. JAMSHEDPUR:18–41

  • Lakherwal D (2014) Adsorption of heavy metals: a review. Int J Enviro Res Dev 4(1):41–48

    Google Scholar 

  • Laskowski J, Kitchener JA (1969) The hydrophilic–hydrophobic transition of silica. J Colloid Interface Sci 29(4):670–679

    CAS  Google Scholar 

  • Lee Y-W, Klein CB, Kargacin B et al (1995) Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 15:2547–2557

    CAS  Google Scholar 

  • Li YT, Corrine R, Marc B et al (2009) Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biol Biochem 41(5):969–977

    CAS  Google Scholar 

  • Li N, Chen Y, Zhang C et al (2015) Highly sensitive determination of butyl xanthate in surface and drinking water by headspace gas chromatography with electron capture detector. Chromatographia 78:1305. doi:10.1007/s10337-015-2940-9

    Article  CAS  Google Scholar 

  • Liu YJ, Ding YJ et al (1997) Study on the thermokinetic properties of bacterial growth. J Therm Anal Calorim 50(5):897–900

    CAS  Google Scholar 

  • Løkke H, Ragas Ad MJ, Holmstrup M (2013) Tools and perspectives for assessing chemical mixtures and multiple stressors. Toxicology 313:73–82

    Google Scholar 

  • Macomber L, Hausinger RP (2011) Mechanisms of nickel toxicity in microorganisms. Metallomics 3(11):1153–1162

    CAS  Google Scholar 

  • McCarty LS, Borget CJ (2006) Review of toxicity of chemicals mixtures: theory, policy and regulatory practice. Regul Toxicol Pharmacol 45(2):119–143

    CAS  Google Scholar 

  • Molina GC, Cayo CH, Rodrigues MAS, Bernardes AM (2013) Sodium Isopropyl xanthate degradation by advanced oxidation process. Minere Eng 45:88–93

    CAS  Google Scholar 

  • Mortensen U, Norén B, Wadsö I (1973) Microcalorimetry in the study of the activity of microorganisms. Bull Ecol Res Comm (Stockholm) 17:189–197

    Google Scholar 

  • Ngole VM, Ekosse GIE (2012) Copper, nickel and zinc contamination in soils within the precincts of mining and landfilling environment. Int JEnvironSciTechnol 9(3):485–494

    CAS  Google Scholar 

  • Nielsen FH (1980) Interaction of nickel with essential minerals. In: Nriagu JO (ed) Nickel in the environment. Wiley, New York, pp 611–634

    Google Scholar 

  • Núñez-Regueira L, Rodríguez-Añón JA, Proupín-Castiñeiras J, Núñez-Fernández O (2006) Microcalorimetric study of changes in the microbial activity in a humic Cambisol after reforestation with eucalyptus in Galicia (NW Spain). Soil Biol Biochem 38(1):115–124

    Google Scholar 

  • Okibe N, Johnson DB (2002) Toxicity of flotation reagents to moderately thermophilic bioleaching microorganisms. Biotechnol Lett 24(23):2011–2016

    CAS  Google Scholar 

  • Patel JS, Patel PC, Kalia K (2006) Isolation and characterization of nickel uptake by nickel resistant bacterial isolate (NiRBI). Biomed Environ Sci 19(4):297–301

    CAS  Google Scholar 

  • Pearse MJ (2005) An overview of the use of chemical reagents in mineral processing. Miner Eng 18(2):139–149

    CAS  Google Scholar 

  • Rao NN, Kumar A, Kaul SN (2000) Alkali-treated straw and insoluble straw xanthate as low cost adsorbents for heavy metal removal-preparation, characterization and application. Bioresour Technol 71:133–142

    Google Scholar 

  • Rathor G, Chopra N, Adhikari T (2014) Nickel as a pollutant and its management. Review paper. Int Res J Environ Sci 3(10):94–98

    CAS  Google Scholar 

  • Reyes-Bozo L, Godoy-Faúndez A et al (2014) Greening Chilean copper mining operations through industrial ecology strategies. J Clean Prod 84(1):671–679

    CAS  Google Scholar 

  • Roane TM, Pepper IL (1999) Microbial responses to environmentally toxic cadmium. Microb Ecol 38:358–364

    CAS  Google Scholar 

  • Rodea-Palomares I, González-Pleiter M et al (2015) Additivity and interactions in Ecotoxicity of pollutant mixtures: some patterns, conclusions, and open questions. Toxics 3(4):342–369

    CAS  Google Scholar 

  • Rodgers GA, Ashworth J (1982) Bacteriostatic action of nitrification inhibitors. Can J Microbiol 28:1093–1100

    CAS  Google Scholar 

  • Rong XM, Huang QY, Jiang DH et al (2007) Isothermal microcalorimetry: a review of applications in soil and environmental sciences. Pedosphere 17:137–145

    CAS  Google Scholar 

  • Rostad CE, Schmitt CJ, Schumacher JG et al (2011) An exploratory investigation of polar organic compounds in waters from a lead zinc mine and mill complex. Water Air Soil Pollut 217(1):431–443

    Google Scholar 

  • Russel M, Yao J, Chen H et al (2009) Different techniques of microcalorimetry and their applications to environmental sciences: a review. J Am Sci 5(4):194–208

    Google Scholar 

  • Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Enviro Microbiol 43(6):1256–1261

    Google Scholar 

  • Scott-Fordsmand JJ (1997) Toxicity of nickel to soil microorganisms in Danmark. Rev Environ ContamToxicol 148(1)

  • Scott-Fordsmand JJ, Krogh PH, Hopkin SP (1999) Toxicity of nickel to a soil-dwelling springtail, Folsomia fimetaria (Collembola: Isotomidae). Ecotoxicol Environ Saf 43(1):57–61

    CAS  Google Scholar 

  • Shean BJ, Cilliers JJ (2011) A review of froth flotation control. Int J Miner Process 100:57–71

    CAS  Google Scholar 

  • Stȩpniewska Z, Wolińska A, Ziomek J (2009) Response of soil catalase activity to chromium contamination. J Environ Sci 21(8):1142–1147

    Google Scholar 

  • Sun Z, Forsling W (1997) The degradation kinetics of ethyl xanthate as a function of pH in aqueous solution. Miner Eng 10(4):389–400

    CAS  Google Scholar 

  • Święcilo A, Zych-Wężyk I (2013) Bacterial stress response as an adaptation to life in a soil environment. Plo JEnviron Stud 22(6):1577–1587

    Google Scholar 

  • Tare V, Chaudhari S, Jawed M (1992) Comparative evaluation of soluble and insoluble xanthate process for heavy metal removal from wastewater. Water Sci Technol 26:237–246

    CAS  Google Scholar 

  • Teixeira da Silva JA, Naeem M, Idress M (2012) Beneficial and toxic effect of nickel in relation to medical and aromatic plants. Med Aromat Plant Sci Technol 6, 94(Special Issue 1):–104

  • Triegel EK (1988) Sampling variability in soils and solid wastes. In: Keith LH (ed) Principals of environmental sampling. American Chemical Society, Washington, pp 385–415

    Google Scholar 

  • U.S. Department of Health and Human Services (1997) Toxicological profile for Nickel-Public Health Service-Agency for Toxic Substances and Disease Registry Georgia Atlanta 296 pp

  • US. Department of Health and Human Services (2016) Toxicological profile for hydrogen sulfide and carbonyl sulfide. Public Health Service-Agency for Toxic Substances and Disease Registry (ATSDR), 298p

  • U.S. Environmental Protection Agency (1997) Aqueous Mercury Treatment-Capsule report. EPA/625/R971004

  • U.S. Environmental Protection Agency (2007) Ecological Soil Screening Levels For Nickel Interim Final; OSWER Directive 9285.7–76

  • Underhill SE, Prosser JI (1985) Inhibition of nitrification by potassium ethyl xanthate in soil and in liquid culture. Soil Biol Biochem 17(2):229–233

    CAS  Google Scholar 

  • Von Ah U, Wirz D, Daniels AU (2009) Isothermal micro calorimetry – a new method for MIC determinations: results for 12 antibiotics and reference strains of E. coli and S. aureus. BMC Microbiol 9:106. doi:10.1186/1471-2180-9-106

    Article  CAS  Google Scholar 

  • Wang F, Yao J, Chen H et al (2010) Comparative toxicity of chlorpyrifos and its oxon derivatives to soil microbial activity by combined methods. Chemosphere 78:319–326

    CAS  Google Scholar 

  • Webb M, Ruber H, Leduc G (1976) The toxicity of various mining flotation reagents to rainbow trout (Salmo gairdneri). Water Res 10(4):303–306

    CAS  Google Scholar 

  • Welp G (1999) Inhibitory effect of the total water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biol Fertil Soils 30:132–139

    CAS  Google Scholar 

  • Wold Health Organization (2011). Guidelines for drinking water quality-Fourth Edition. 564p

  • World Health Organization (WHO) (1991) Nickel. Environmental Health criteria 108. 383pp

  • Wyszkowska J, Kucharski J, Boros E (2005) Effect of nickel contamination on soil enzymatic activities. Plant Soil Environ 51(12):523–531

    CAS  Google Scholar 

  • Wyszkowska J, Boros E, Kucharski J (2007) Effect of interactions between nickel and other heavy metals on the soil microbiological properties. Plant Soil Environ 53(12):544–552

    CAS  Google Scholar 

  • Wyszkowska J, Kucharski J, Borowik A, et al (2008) Response of bacteria to soil contamination with heavy metals. J Elem 13(3):443–453

  • Xian Y, Wang M, Chen W (2015) Quantitative assessment of soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere 139:604–608

    CAS  Google Scholar 

  • Xie XH, Jin F, Wang HP et al (2010) Heavy metal resistance by two bacteria strains isolated from a copper mine tailing in China. Afr J Biotechnol 9(26):4056–4066

    CAS  Google Scholar 

  • Yanev SG, Kent UM, Roberts ES et al (2000) Mechanistic studies of cytochrome P450 2B1 inactivation by xanthates. Arch Biochem Biophys 378(1):157–166

    CAS  Google Scholar 

  • Yang Y, Zhu J, Liu et al (2005) Microcalorimetry is a sensitive method for studying the effect of nucleotide mutation on promoter activity. J Biochem Biophys Methods 62(3):183–189

    CAS  Google Scholar 

  • Yang G, Chen C, Wang Y et al (2015) Joint toxicity of chlorpyrifos, atrazine, and cadmium at lethal concentrations to the earthworm Eisenia fetida. Environ Sci Pollut Res 22(12):9307–9315

    CAS  Google Scholar 

  • Zhang L, Zhijie WU, Chen LJ et al (2013) Kinetics of catalase and dehydrogenase in main soils of Northeast China under different soil moisture conditions. Agric J 2:113–120

    Google Scholar 

  • Zheng S, Hu J, Ke C et al (2009) Soil microbial activity measured by microcalorimetry in response to long-term fertilization regimes and available phosphorous on heat evolution. Soil Biol Biochem 41(10):2094–2099

    CAS  Google Scholar 

  • Zhou Y, Yao J, Choi MMF et al (2009) A combination method to study microbial communities and activities in zinc contaminated soil. J Hazard Mater 169:875–881

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the International Joint Key Project from Chinese Ministry of Science and Technology (2010DFB23160), Key project from National Science Foundation of China (41430106), National Natural Science Foundation of China (41273092), Public welfare project of Chinese Ministry of Environmental Protection (201409042). We are thankful for Dr. Wang Fei, Dr. Weijuan Lin, Mr. Zunwei Guo, and Mr. Mpumelelo Elton Jikumlambo and Mr. Dimberu G. Atinafu for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prudence Bararunyeretse.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bararunyeretse, P., Ji, H. & Yao, J. Toxicity of nickel to soil microbial community with and without the presence of its mineral collectors—a calorimetric approach. Environ Sci Pollut Res 24, 15134–15147 (2017). https://doi.org/10.1007/s11356-017-9127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9127-x

Keywords

Navigation