Skip to main content
Log in

Adsorption of nickel ions by oleate-modified magnetic iron oxide nanoparticles

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this work, magnetic nanoparticles of iron oxide (MNPs) were synthesized, and then the surface was recovered with an oleate double layer in order to investigate the ability of this material to adsorb nickel ions. First, the solution chemistry of oleate ions was investigated in order to determine the critical micellar concentration (CMC) value and the arrangements of ions above the CMC. Then, the synthesized oleate-modified MNP was characterized (TEM, DLS, XRD, FTIR, zeta potential, magnetometry). Finally, adsorption experiments were carried out as a function of pH and as a function of nickel concentration in 0.1 g L−1 suspensions of oleate-modified MNP. The results show that CMC of oleate ranges from 1 to 2.5∙10−3 mol L−1. Above CMC, arrangement of oleate ions as droplets, vesicles, or micelles depends on pH and influences the average size and solution absorbance. Potentiometric titrations allowed determining a pKa value of 7.8 for sodium oleate. The high stability in aqueous suspensions and characterization of oleate-modified MNP confirm that oleate ions are arranged as a bilayer coating at the surface of MNP. Retention of nickel was found to be highly dependent on pH, with a maximum adsorption (90%) beginning from pH = 7.5. The sorption isotherms were well fitted with the Langmuir model and the maximum nickel adsorption capacities were found to be 44 and 80 mg g−1 for pH = 6.8 and 7.2, respectively. The efficient removal of nickel combined with the magnetic properties of the NMP make the oleate-modified MNP an interesting water purification tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akhter MS (1997) Effect of acetamide on the critical micelle concentration of aqueous solutions of some surfactants. Colloids Surf A Physicochem Eng Asp 121 (2-3):103–109

  • Andreu V, Gimeno-Garcia E, Pascual JA, Vazquez-Roig P, Pico Y (2016) Presence of pharmaceuticals and heavy metals in the waters of a Mediterranean coastal wetland: potential interactions and the influence of the environment. Sci Total Environ:278–286

  • Azizi P, Golshekan M, Shariati S, Rahchamani J (2015) Solid phase extraction of Cu2+, Ni2+, and Co2+ ions by a new magnetic nano-composite: excellent reactivity combined with facile extraction and determination. Environ Monit Assess 187:1–11 C7–185

    Article  CAS  Google Scholar 

  • Bica D, Vékas L, Avdeev MV, Marinica O, Socoliuc V, Balasoiu M, Garamus VM (2007) Sterically stabilized water based magnetic fluids: synthesis, structure and properties. J Magn Magn Mater 311:17–21

    Article  CAS  Google Scholar 

  • Borukhov I, Andelman D, Borrega R, Cloitre M, Leibler L, Orland H (2000) Polyelectrolyte titration: theory and experiment. J Phys Chem B 104:11027–11034

    Article  CAS  Google Scholar 

  • Camel V (2003) Solid phase extraction of trace elements. Spectrochim Acta B At Spectrosc 58:1177–1233

    Article  Google Scholar 

  • Carbeck JD, Colton IJ, Anderson JR, Deutch JM, Whitesides GM (1999) Correlations between the charge of proteins and the number of ionizable groups they incorporate: studies using protein charge ladders, capillary electrophoresis, and Debye-Hückel theory. J Am Chem Soc 121:10671–10679

    Article  CAS  Google Scholar 

  • Charlot G (1974) Chimie analytique quantitative. Masson, Paris

    Google Scholar 

  • Chen J, Hao Y, Chen M (2014) Rapid and efficient removal of Ni2+ from aqueous solution by the one-pot synthesized EDTA-modified magnetic nanoparticles. Environ Sci Pollut Res 21:1671–1679

    Article  CAS  Google Scholar 

  • Cheng G, He M, Peng H, Hu B (2012) Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determination by ICP-OES. Talanta 88:507–515

    Article  CAS  Google Scholar 

  • Cook MA (1951) Mechanism of hydrolysis in aqueous soap solutions. J Phys Chem 55:383–402

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003): The iron oxides: structure, properties, reactions, occurrences and uses. 664 p. John Wiley & Sons, Wiley-VCH Verlag GmbH and Co

  • El Kadi N, Martins F, Clausse D, Schulz P (2003) Critical micelle concentrations of aqueous hexadecyltrimethylammonium bromide-sodium oleate mixtures. Colloid Polym Sci 281:353–362

    Article  CAS  Google Scholar 

  • El-Shahawi MS, Hamza A, Bashammakh AS, Al-Saggaf WT (2010) An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 80:1587–1597

    Article  CAS  Google Scholar 

  • Giakisikli G, Anthemidis AN (2013) Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal Chim Acta 789:1–16

    Article  CAS  Google Scholar 

  • Hildebrand A, Garidel P, Neubert R, Blume A (2004) Thermodynamics of demicellization of mixed micelles composed of sodium oleate and bile salts. Langmuir 20 (2):320–328

  • Hu L, Percheron A, Chaumont D, Brachais C-H (2011) Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite. J Sol-Gel Sci Technol 60:198–205

    Article  CAS  Google Scholar 

  • Huang S-H, Chen D-H (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163:174–179

    Article  CAS  Google Scholar 

  • Jang JH, Lim HB (2010) Characterization and analytical application of surface modified magnetic nanoparticles. Microchem J 94:148–158

    Article  CAS  Google Scholar 

  • Janke JJ, Bennett WFD, Tieleman DP (2014) Oleic acid phase behavior from molecular dynamics simulations. Langmuir 30:10661–10667

    Article  CAS  Google Scholar 

  • Jarlbring M, Gunneriusson L, Hussmann B, Forsling W (2005) Surface complex characteristics of synthetic maghemite and hematite in aqueous suspensions. J Colloid Interface Sci 285:212–217

    Article  CAS  Google Scholar 

  • Jones AP (1999) Indoor air quality and health. Atmos Environ 33:4535–4564

    Article  CAS  Google Scholar 

  • Kanicky JR, Shah DO (2002) Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. J Colloid Interface Sci 256:201–207

    Article  CAS  Google Scholar 

  • Kapusta P, Sobczyk Å (2015) Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Sci Total Environ 536:517–526

    Article  CAS  Google Scholar 

  • Karimi MA, Kafi M (2013) Removal, preconcentration and determination of Ni(II) from different environmental samples using modified magnetite nanoparticles prior to flame atomic absorption spectrometry. Arab J Chem 8:812–820

    Article  Google Scholar 

  • Keshavarzi B, Tazarvi Z, Rajabzadeh MA, Najmeddin A (2015) Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of shiraz, Iran. Atmos Environ 119:1–10

    Article  CAS  Google Scholar 

  • Koetz J, Kosmella S (2007) Polyelectrolytes and nanoparticles. Springer Science & Business Media

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Li X, Yang Y, Xu X, Xu C, Hong J (2015) Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China. J Clean Prod

  • Lucassen J (1966) Hydrolysis and precipitates in carboxylate soap solutions. J Phys Chem 70:1824–1830

    Article  CAS  Google Scholar 

  • Luna-Acosta A, Budzinski H, Le Menach K, Thomas-Guyon H, Bustamante P (2015) Persistent organic pollutants in a marine bivalve on the Marennes-Oléron Bay and the Gironde Estuary (French Atlantic Coast) part 1: bioaccumulation. Sci Total Environ 514:500–510

    Article  CAS  Google Scholar 

  • Magnet C, Kuzhir P, Bossis G, Meunier A, Suloeva L, Zubarev A (2012) Haloing in bimodal magnetic colloids: the role of field-induced phase separation. Phys Rev E 86:011404

    Article  CAS  Google Scholar 

  • Mashhadizadeh MH, Karami Z (2011) Solid phase extraction of trace amounts of Ag, Cd, Cu, and Zn in environmental samples using magnetic nanoparticles coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1,3,4-thiadiazole and their determination by ICP-OES. J Hazard Mater 190:1023–1029

    Article  CAS  Google Scholar 

  • Mattson FH, Volpenhein RA (1966) Enzymatic hydrolysis at an oil/water interface. J Am Oil Chem Soc 43:286–289

    Article  CAS  Google Scholar 

  • Miura M, Kodama M (1972) The second CMC of the aqueous solution of sodium dodecyl sulfate. I Conductivity Bull Chem Soc Japan 45:428–431

    Article  CAS  Google Scholar 

  • Morigaki K, Walde P (2007) Fatty acid vesicles. Curr Opin Colloid Interface Sci 12:75–80

    Article  CAS  Google Scholar 

  • Ngomsik A-F, Bee A, Siaugue J-M, Cabuil V, Cote G (2006) Nickel adsorption by magnetic alginate microcapsules containing an extractant. Water Res 40:1848–1856

    Article  CAS  Google Scholar 

  • Ngomsik A-F, Bee A, Talbot D, Cote G (2012) Magnetic solid-liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with maghemite nanoparticles. Sep Purif Technol 86:1–8

    Article  CAS  Google Scholar 

  • Panneerselvam P, Morad N, Tan KA (2011) Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J Hazard Mater 186:160–168

    Article  CAS  Google Scholar 

  • Raman A, Kuban B, Razvan A (1991) The application of infrared spectroscopy to the study of atmospheric rust systems—I. Standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products. Corros Sci 32:1295–1306

    Article  CAS  Google Scholar 

  • Rendon A, Carton David G, Sot J, Garcia-Pacios M, Montes R, Valle M, Arrondo J-Luis R, Goni Felix M, Ruiz-Mirazo K (2012) Model systems of precursor cellular membranes: long-chain alcohols stabilize spontaneously formed oleic acid vesicles. Biophys J 102:278–286

    Article  CAS  Google Scholar 

  • Roonasi P, Yang X, Holmgren A (2010) Competition between sodium oleate and sodium silicate for a silicate/oleate modified magnetite surface studied by in situ ATR-FTIR spectroscopy. J Colloid Interface Sci 343:546–552

    Article  CAS  Google Scholar 

  • Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215-216:208–216

    Article  CAS  Google Scholar 

  • Salentinig S, Sagalowicz L, Glatter O (2010) Self-assembled structures and pKa value of oleic acid in systems of biological relevance. Langmuir 26:11670–11679

    Article  CAS  Google Scholar 

  • Sharma YC, Srivastava V (2010) Separation of Ni(II) ions from aqueous solutions by magnetic nanoparticles. J Chem Eng Data 55:1441–1442

    Article  CAS  Google Scholar 

  • Shen L, Laibinis PE, Hatton TA (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15:447–453

    Article  CAS  Google Scholar 

  • Stainsby G, Alexander AE (1949) Studies of soap solutions. Part I. The fatty acid soaps and their hydrolysis in aqueous solutions. Trans Faraday Soc 45:585–597

    Article  CAS  Google Scholar 

  • Svoboda J (2004) Magnetic techniques for the treatment of materials. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Tamamushi B-i, Shirai M, Tamaki K (1958) A study on the micellar solutions of sodium oleate and elaidate. Bull Chem Soc Jpn 31:467–472

    Article  CAS  Google Scholar 

  • Vuong QL, Berret J-F, Fresnais J, Gossuin Y, Sandre O (2012) A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T2-contrast agents. Adv Healthc Mater 1:502–512

    Article  CAS  Google Scholar 

  • Wang XS, Ren JJ, Lu HJ, Zhu L, Liu F, Zhang QQ, Xie J (2010) Removal of Ni(II) from aqueous solutions by nanoscale magnetite. CLEAN—Soil Air Water 38:1131–1136

    Article  CAS  Google Scholar 

  • White BR, Stackhouse BT, Holcombe JA (2009) Magnetic g-Fe2O3 nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). J Hazard Mater 161:848–853

    Article  CAS  Google Scholar 

  • Wooding A, Kilner M, Lambrick DB (1991) Studies of the double surfactant layer stabilization of water-based magnetic fluids. J Colloid Interface Sci 144:236–242

    Article  CAS  Google Scholar 

  • Wu N, Fu L, Su M, Aslam M, Wong K, Dravid V (2004) Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett 4:383–386

    Article  CAS  Google Scholar 

  • Xin X, Xu G, Wang Y, Mao H, Zhang Z (2008) Interaction between star-like block copolymer and sodium oleate in aqueous solutions. Eur Polym J 44 (10):3246–3255

  • Yang K, Peng H, Wen Y, Li N (2010) Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl Surf Sci 256:3093–3097

    Article  CAS  Google Scholar 

  • Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with Thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41:5114–5119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Hurel.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnet, C., Lomenech, C., Hurel, C. et al. Adsorption of nickel ions by oleate-modified magnetic iron oxide nanoparticles. Environ Sci Pollut Res 24, 7423–7435 (2017). https://doi.org/10.1007/s11356-017-8391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8391-0

Keywords

Navigation