Skip to main content
Log in

Multi-analytical methodology to diagnose the environmental impact suffered by building materials in coastal areas

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work is focused on the development of an innovative multi-analytical methodology to estimate the impact suffered by building materials in coastal environments. With the aim of improving the in situ spectroscopic assessment, which is often based on XRF and Raman spectrometers, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was implemented in the diagnosis study. In this way, the additional benefits from DRIFT were compared to the usual in situ analyses of building materials, which often have interferences from fluorescence and reststrahlen effects. The studies were extended to the laboratory scale by μ-X-ray fluorescence (μ-XRF) cross-section mapping and ion chromatography (IC), and the IC quantitative data were employed to develop thermodynamic models using the ECOS-RUNSALT program, with the aim of rationalizing the behavior of soluble salts with variations in the temperature and the relative humidity (RH). The multi-analytical methodology allowed identification of the most significant weathering agents and classification of the severity of degradation according to the salt content. The suitability of a DRIFT portable device to analyze these types of matrices was verified. Although the Kramers-Kronig algorithm correction proved to be inadequate to decrease the expected spectral distortions, the assignment was successfully performed based on the secondary bands and intensification of the overtones and decreased the time needed for in situ data collection. In addition, the pollutants’ distribution in the samples and the possible presence of dangerous compounds, which were not detected during the in situ analysis campaigns, provided valuable information to clarify weathering phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • American Society for Testing and Materials (1998) Annual book of ASTM standards. ASTM International, West Conshohocken

    Google Scholar 

  • Andrikopoulos KS, Sister D, Roussel B, Janssens K (2006) In vitro validation of a mobile Raman-XRF micro-analytical instrument’s capabilities on the diagnosis of Byzantine icons. J Raman Spectrosc 37(10):1026–1034. https://doi.org/10.1002/jrs.1612

    Article  CAS  Google Scholar 

  • Anselmi A, Presciutti F, Doherthy B, Brunetti BG, Sgmellotti A, Miliani C (2011) The study of cyclododecane as a temporary coating for marble by NMR profilometry and FTIR reflectance spectroscopies. Appl Phys 104(1):401–406. https://doi.org/10.1007/s00339-010-6170-6

    Article  CAS  Google Scholar 

  • Aramendia J, Gomez-Nubla L, Castro K, Martinez-Arkarazo I, Vega D, Sanz López de Heredia A, García Ibáñez de Opakua A, Madariaga JM (2012) Portable Raman study on the conservation state of four CorTen steel-based sculptures by Eduardo Chillida impacted by urban atmospheres. J Raman Spectrosc 43(8):1111–1117. https://doi.org/10.1002/jrs.3158

    Article  CAS  Google Scholar 

  • Arrizabalaga I, Gómez-Laserna O, Aramendia J, Arana G, Madariaga JM (2014) Applicability of a diffuse reflectance infrared Fourier transform handheld spectrometer to perform in-situ analyses on Cultural Heritage materials. Spectrochim Acta A 129:256–267

    Article  Google Scholar 

  • Arrizabalaga I, Gómez-Laserna O, Carrero JA, Bustamante J, Rodríguez A, Arana G, Madariaga JM (2015) Diffuse reflectance FTIR database for the interpretation of the spectra obtained with a handheld device on built heritage materials. J Anal Methods 7(3):1061–1070. https://doi.org/10.1039/C4AY02189D

    Article  CAS  Google Scholar 

  • Auras M (2011) Leitfaden Naturstein-Monitoring. Nachkontrolle und Wartung als zukunftsweisende Erhaltungsstrategien. Fraunhofer-IRB-Verl, Stuttgart

    Google Scholar 

  • Bai Y, Thompson GE, Martinez-Ramirez S, Brüeggerhoff S (2003) Mineralogical study of salt crusts formed on historical building stones. Sci Total Environ 302(1-3):247–251. https://doi.org/10.1016/S0048-9697(02)00339-X

    Article  CAS  Google Scholar 

  • Barman I, Kong CR, Singh GP, Dasari RR (2011) Effect of photobleaching on calibration model development in biological Raman spectroscopy. J Biomed Opt 16(1):011004. https://doi.org/10.1117/1.3520131

    Article  Google Scholar 

  • Basque Government, Department of Environment, Territorial Policy and Housing, www.ingurumena.ejgv.euskadi.eus

  • Benavente D, Brimblecombe P, Grossi CM (2015) Thermodynamic calculations for the salt crystallization damage in porous built heritage using PHREEQC. Environ Earth Sci 74(3):2297–2313. https://doi.org/10.1007/s12665-015-4221-1

    Article  CAS  Google Scholar 

  • Bicchieri M, Monti M, Piantanida G, Pinzari F, Sodo A (2011) Non-destructive spectroscopic investigation on historic Yemenite scriptorial fragments: evidence of different degradation and recipes for iron tannic inks. Vib Spectrosc 55(2):267–272. https://doi.org/10.1016/j.vibspec.2010.12.006

    Article  CAS  Google Scholar 

  • Bionda D (2005) RUNSALT—a graphical user interface to the ECOS thermodynamic model for the prediction of the behavior of salt mixtures under changing climate conditions. http://science.sdf-eu.org/runsalt/

  • BOPV, Boletín Oficial de País Vasco, No. 249, Decree 317 2002 of 30 December, art.13, sobre actuaciones protegidas de rehabilitación del patrimonio urbanizado y edificado, the Autonomous Community of the Basque Country

  • Cardiano P, Sergi S, De Stefano C, Loppolo S, Piraino P (2008) Investigations on ancient mortars from the Basilian monastery of Fragalà. J Therm Anal Calorim 91(2):477–485. https://doi.org/10.1007/s10973-006-8313-8

    Article  CAS  Google Scholar 

  • Castro K, Perez-Alonso M, Rodríguez-Laso MD, Fernández LA, Madariaga JM (2005) Anal Bioanal Chem 382(2):248–258. https://doi.org/10.1007/s00216-005-3072-0

    Article  CAS  Google Scholar 

  • Chávez-Ulloa E, Camacho-Chab R, Sosa-Baz M, Castro-Borges P, Pérez-López T (2013) Corrosión process of reinforced concrete by carbonation in a natural environment and an accelerated test chamber. Int J Electrochem Sci 8:9015–9029

    Google Scholar 

  • City Council. Special protection plan of urban and built heritage: www.donostia.eus/

  • C.N.R.-I.C.R (1980) Materiali Lapidei: Campionamento. Comas Gráfica, Roma

    Google Scholar 

  • Colomban P (2011) The on-site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. J Raman Spectrosc 43(11):1529–1535

    Article  Google Scholar 

  • COM (2014) 477 final, towards an integrated approach to cultural heritage for Europe, Brussels

  • Dariz P, Schmid T (2017) Ferruginous phases in 19th century lime and cement mortars: a Raman microspectroscopic study. Mater Charact 129:9–17. https://doi.org/10.1016/j.matchar.2017.04.009

    Article  CAS  Google Scholar 

  • Doehne E, Price CA (2010) Stone conservation: an overview of current research. Getty Conservation Institute, Los Angeles

    Google Scholar 

  • Downs R T (2006) Program and abstracts of the 19th general meeting of the International Mineralogical Association in Kobe, Japan O03: 13

  • Euskalmet. Basque Meteorological Agency, www.euskalmet.euskadi.net

  • Flatt RJ, Caruso F, Aguilar Sanchez AM, Scherer GW (2014) Chemo-mechanics of salt damage in stone. Nat Commun 5(4823):4823. https://doi.org/10.1038/ncomms5823

    Article  CAS  Google Scholar 

  • Fraquelo ML, Duran A, Herrera LK, Jimenez de Haro MC, Perez-Rodríguez JL (2009) Old and modern pigments identification from a 14th century sculpture by micro-Raman. J Mol Struct 924-926:404–412

    Article  Google Scholar 

  • Fregenal M, López Gómez J, Martín Chivelet J (2000) Ciencias de la Tierra. Diccionarios Oxford-Complutense, Madrid

    Google Scholar 

  • García-Garmilla, Rodríguez-Maribona I, Cano M, Zalbide M, Ibáñez-Gómez J A, Osa-Chans K, Garín S (2002). An analytical comparison of two commercial consolidating products applied to eocene sandstones from 16th and 19th century monuments in San Sebastián, northern Spain. Mater Constr 52: 5–12, 266, DOI: https://doi.org/10.3989/mc.2002.v52.i266.331

  • Gázquez F, Rull F, Median J, Sanz C (2015) Linking groundwater pollution to the decay of 15th-century sculptures in Burgos Cathedral (northern Spain). Environ Sci Pollut Res 22(20):15677–15689. https://doi.org/10.1007/s11356-015-4754-6

    Article  Google Scholar 

  • Gázquez F, Rull F, Sanz-Arranz A, Medina J, Calaforra JM, De las Heras C, Lasheras JA (2017) In situ Raman characterization of minerals and degradation processes in a variety of cultural and geological heritage sites. Spectrochim Acta A 172:48–57. https://doi.org/10.1016/j.saa.2016.04.035

    Article  Google Scholar 

  • Giakoumaki A, Osticioli I, Angos D (2006) Spectroscopic analysis using a hybrid LIBS-Raman system. Appl Phys A Mater 83:537–541

    Article  CAS  Google Scholar 

  • Gipuzkoa Provincial Council, Historical Artistic and Archaelogical Heritage: gipuzkoakultura.net

  • Gómez-Laserna O, Olazabal M, Morillas H, Prieto-Taboada N, Martínez-Arkarazo I, Arana G, Madariaga JM (2013) In-situ spectroscopic assessment of the conservation state of building materials from a palace house affected by infiltration water. J Raman Spectrosc 44(9):1277–1284. https://doi.org/10.1002/jrs.4359

    Article  Google Scholar 

  • Gómez-Laserna O, Prieto-Taboada N, Morillas H, Arrizabalaga I, Olazabal M, Arana G, Madariaga JM (2015) Analytical study to evaluate the origin and severity of damage caused by salt weathering in a historical palace house: the attack of infiltration water. Anal Methods 7(11):4608–4615. https://doi.org/10.1039/C4AY02632B

    Article  Google Scholar 

  • Graue B, Siegesmund S, Oyhantcabal P, Naumann R, Licha T, Simon K (2013) The effect of air pollution on stone decay: the decay of the Drachenfels trachyte in industrial, urban and rural environments—a case study of the Cologne, Altenberg and Xanten cathedrals. Environ Earth Sci 69(4):1095–1224. https://doi.org/10.1007/s12665-012-2161-6

    Article  CAS  Google Scholar 

  • Hopkinson L, Rutt K, Kristova P, Blows J, Firth C (2015) Sourcing limestone masonry for restoration of historic buildings, a spectroscopic pilot study. J Cult Herit 16(6):822–830. https://doi.org/10.1016/j.culher.2015.03.007

    Article  Google Scholar 

  • Jiménez Roca E, Ruiz-Conde A, Sánchez-Soto PJ (2005) Preparation of stratigraphic sections (cross-sections): some practical aspects on the analysis of strates coming from Cultural Heritage materials (pigments and supports). Bol Soc Esp Ceram 44(6):382–278. https://doi.org/10.3989/cyv.2005.v44.i6.333

    Article  Google Scholar 

  • Johansson LG, Linqvist O, Mangio RE (1988) Corrosion of calcareous stones in humid air containing SO2 and NO2. Dur Build Mater 5:439–449

    CAS  Google Scholar 

  • Kortum G (1969) Reflection spectroscopy. Springer, Berlin. https://doi.org/10.1007/978-3-642-88071-1

    Book  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen–Geiger climate classification updated. Meteorology 15(3):259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Maguregui M, Prieto-Taboada N, Trebolazabala J, Goienaga N, Arrieta N, Aramendia J, Gomez-Nubla L, Sarmiento A, Olivares M, Carrero J A, Martinez-Arkarazo I, Castro K, Arana G, Olazabal M A, Fernandez L A, Madariaga J M (2010) Chemch first international congress chemistry for cultural heritage168

  • Matović V, Erić S, Kremenović A, Colomban P, Serćković-Batoćanin D, Matović N (2012) The origin of syngenite in black crusts on the limestone monument King’s Gate (Belgrade Fortress, Serbia)—the role of agriculture fertiliser. J Cult Herit 13(2):175–186. https://doi.org/10.1016/j.culher.2011.09.003

    Article  Google Scholar 

  • Medeghini L, Lottic PP, De Vito C, Mignardi S, Bersani D (2014) Micro-Raman spectroscopy and ancient ceramics: applications and problems. J Raman Spectrosc 45:1244–1250

  • Miliani C, Rosi F, Daver I, Brunetti BG (2012) Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Appl Phys A Mater Sci Process 106(2):295–307. https://doi.org/10.1007/s00339-011-6708-2

    Article  CAS  Google Scholar 

  • Nikolaus s A, Theoulakis P, Pitinis C (2009) Dry deposition effect of marine aerosol to the building stone of the medieval city of Rhodes, Greece. Built Environ 44(2):260–270. https://doi.org/10.1016/j.buildenv.2008.03.001

    Article  Google Scholar 

  • Pérez-Alonso M, Castro K, Álvarez M, Madariaga JM (2004) Scientific analysis versus restorer’s expertise for diagnosis prior to restoration process: the case of Santa Maria Church (Hermo, Asturias, North of Spain). Anal Chim Acta 524(1-2):379–389. https://doi.org/10.1016/j.aca.2004.06.034

    Article  Google Scholar 

  • Pérez-Alonso M, Castro K, Madariaga JM (2006) Investigation of degradation mechanisms by portable Raman spectroscopy and thermodynamic speciation: the wall painting of Santa Maria de Lemoniz (Basque Country, North of Spain). Anal Chim Acta 571(1):121–128. https://doi.org/10.1016/j.aca.2006.04.049

    Article  Google Scholar 

  • Price C A (2000) An expert chemical model for determining the environmental conditions needed to prevent salt damage in porous materials. European Commission Research Report No 11 (Protection and Conservation of European Cultural Heritage), Archetype Publications, London

  • Prieto Taboada N, Gómez Laserna O, Martínez Arkarazo I, Olazabal MA, Madariaga JM (2012) Optimizations of two methods based on ultrasound energy as alternative to European standards from soluble salts extraction from building materials. J Ultrasound Sonochem 19(6):1260–1265. https://doi.org/10.1016/j.ultsonch.2012.03.002

    Article  CAS  Google Scholar 

  • Prieto Taboada N, Gómez Laserna O, Martínez Arkarazo I, Olazabal M, Madariaga JM (2013) Relevance of cross-section analysis in correct diagnosis of the state of conservation of building materials as evidenced by spectroscopic imaging. Anal Chem 85(20):9501–9507. https://doi.org/10.1021/ac4010315

    Article  CAS  Google Scholar 

  • Prieto-Taboada N, Ibarrondo I, Gomez-Laserna O, Martinez-Arkarazo I, Olazabal M A, Madariaga J M (2013) Buildings as repositories of hazardous pollutants of anthropogenic origin. J Hazard Mater 248–249: 451–460, 248-249, DOI: https://doi.org/10.1016/j.jhazmat.2013.01.008

  • RILEM (1978), Crystallization test by total immersion (test V.1). Crystallization by partial immersion (test V.2). Proc Int Symp Deterioration and Conservation of Stone Monuments (UNESCO-RILEM), Paris

  • Rodríguez-Maribona I, Zabalbide M, García Garmilla F, Ibáñez JA, Garín S (1999) Conservation study of the stone material used in the Culture House of Almirante Oquendo, in San Sebastian. Mater Construcc 49:19–30

    Article  Google Scholar 

  • Rodríguez-Navarro C, Doehne E, Sebastian E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cem Concr Res 30(10):1527–1534. https://doi.org/10.1016/S0008-8846(00)00381-1

    Article  Google Scholar 

  • Saetta AV, Vitaliani RV (2004) Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures: part I: theoretical formulation. Cement Concrete Res 34(4):571–579. https://doi.org/10.1016/j.cemconres.2003.09.009

    Article  CAS  Google Scholar 

  • Sarmiento A, Perez-Alonso M, Olivares M, Castro K, Martinez-Arkarazo I, Fernandez LA, Madariaga JM (2011) Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis. Anal Bioanal Chem 399(10):3601–3611. https://doi.org/10.1007/s00216-011-4677-0

    Article  CAS  Google Scholar 

  • Sawdy A, Price C (2004) Salt damage at Cleeve Abbey, England. Part I: a comparison of theoretical predictions and practical observations. J Cult Herit 6:125–135

    Article  Google Scholar 

  • Sawdy A, Price C (2005) Salt damage at Cleeve Abbey, England. Part II: seasonal variability of salt distribution and implications for sampling strategies. J Cult Herit 6(4):361–367. https://doi.org/10.1016/j.culher.2005.10.002

    Article  Google Scholar 

  • Schreiber M, Otto M, Fedotov PS, Wennrich R (2005) Dynamic studies on the mobility of trace elements in soil and sediment samples influenced by dumping of residues of the flood in the Mulde River region in 2002. J Chemosphere 61(1):107–115. https://doi.org/10.1016/j.chemosphere.2005.02.096

    Article  CAS  Google Scholar 

  • Selwyn L (2004) Overview of archaeological iron: the corrosion problem, key factors affecting treatment, and gaps in current knowledge. Metal National Museum of Canberra, Australia

  • Seo SS, Son SM, Lee CH, Bask K (2007) Compositional analysis of soluble salt in Bresle extraction from blocks in newbuilding shipyards. ISST, Osaka

    Google Scholar 

  • Siegesmund S, Snethlage R (2011) Stone in architecture. Springer, Berlin. https://doi.org/10.1007/978-3-642-14475-2

    Book  Google Scholar 

  • Steiger M, Asmussen S (2008) Crystallization of sodium sulfate phases in porous materials: the phase diagram Na2SO4-H2O and the generation of stress. Geochim Cosmochim Acta 72(17):4291–4306. https://doi.org/10.1016/j.gca.2008.05.053

    Article  CAS  Google Scholar 

  • Tournié A, Prinsloo LC, Paris C, Colomban P, Smith B (2011) The first in situ Raman spectroscopic study of San rock art in South Africa: procedures and preliminary results. J Raman Spectrosc 42(3):399–406. https://doi.org/10.1002/jrs.2682

    Article  Google Scholar 

  • Tsui N, Flatt RJ, Scherer GW (2003) Crystallization damage by sodium sulfate. J Cult Herit 4(2):109–115. https://doi.org/10.1016/S1296-2074(03)00022-0

    Article  Google Scholar 

  • Veneranda M, Aramendia J, Gómez-Laserna O, Fdez-Ortiz S, García-Camino L, Castro K, Azkarate A, Madariaga JM (2016) Characterization of archaeometallurgical artefacts by means of portable Raman systems: corrosion mechanisms influenced by marine aerosol. J Raman Spectrosc 48:258–266

    Article  Google Scholar 

  • Vítek P, Jehlicka J, Howell GM, Edwards M (2013) Practical considerations for the field application of miniaturized portable Raman instrumentation for the identification of minerals. Appl Spectrosc 67(7):767–778. https://doi.org/10.1366/12-06774

    Article  Google Scholar 

Download references

Acknowledgements

O. Gómez-Laserna and L. Kortazar, gratefully acknowledge their post-doctoral contract from the University of the Basque Country (UPV-EHU) and predoctoral fellowship from the Basque Government (GV/EJ), respectively.

Funding

This work has been financially supported by the project MADYLIN from the Spanish Ministry of Economy and Competitiveness (MINECO) (ref: BIA2017-87063-P) and by the European Regional Development Fund (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia Gómez-Laserna.

Additional information

Responsible editor: Santiago V. Luis

Electronic supplementary material

Figure A1

Plan of the studied area (dock promenade of Donostia) of the building location is indicated. (GIF 92 kb)

High resolution image (TIFF 1120 kb)

Figure A2

Average ion content determined by ion chromatography of sandstone samples of the facade in different months. (GIF 23 kb)

High resolution image (TIFF 318 kb)

Table A1

Building material samples collected in the Fishermen’s Association building. The type of material, height (low from 0 to 0.2 m, medium at 0.8 m and high 1.5 m) on the wall and area of the building are indicated. (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Laserna, O., Cardiano, P., Diez-Garcia, M. et al. Multi-analytical methodology to diagnose the environmental impact suffered by building materials in coastal areas. Environ Sci Pollut Res 25, 4371–4386 (2018). https://doi.org/10.1007/s11356-017-0798-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0798-0

Keywords

Navigation