Skip to main content

Advertisement

Log in

Tributyltin chloride disrupts aortic vascular reactivity and increases reactive oxygen species production in female rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Organotin compounds, such as tributyltin (TBT), are environment contaminants that induce bioaccumulation and have potential toxic effects on marine species and mammals. TBT have been banned by the International Maritime Organization in 2003. However, the assessment of butyltin and metal contents in marine sediments has demonstrated high residual levels of TBT in some cases exceeding 7000 ng Sn g−1. The acceptable daily intake (ADI) level for TBT established by the World Health Organization is 0.5 μg/kg bw/day is based on genotoxicity, reproduction, teratogenicity, immunotoxicity, and mainly neurotoxicity. However, their effect on the cardiovascular system is not well understood. In this study, female rats were exposed to 0.5 μg/kg/day of TBT for 15 days with the goal of understanding the effect of TBT on vascular function. Female Wistar rats were treated daily by gavage and divided into control (n = 10) and TBT (n = 10) groups. The aortic rings were incubated with phenylephrine in both the presence and absence of endothelium. The phenylephrine concentration–response curves were generated by exposing endothelium-intact samples to NG-nitro-l-arginine methyl ester (L-NAME), apocynin, superoxide dismutase (SOD), catalase, tiron, and allopurinol. Acetylcholine (ACh) and sodium nitroprusside (SNP) were used to evaluate the relaxation response. Exposure to TBT reduced serum 17β-estradiol E2 levels and increased vascular reactivity. After incubation with L-NAME, the vascular reactivity to phenylephrine was significantly higher. Apocynin, SOD, catalase, and tiron decreased the vascular reactivity to phenylephrine to a significantly greater extent in TBT-treated rats than in the control rat. The relaxation induced by ACh and SNP was significantly reduced in TBT rats. Exposure to TBT induced aortic wall atrophy and increased superoxide anion production and collagen deposition. These results provide evidence that exposing rats to the current ADI for TBT (0.5 μg/kg) for 15 days induced vascular dysfunction due to oxidative stress and morphological damage and should be considered an important cardiovascular risk factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguado A, Galán M, Zhenyukh O, Wiggers GA, Roque FR, Redondo S, Peçanha F, Martín A, Fortuño A, Cachofeiro V, Tejerina T, Salaices M, Briones AM (2013) Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways. Toxicol Appl Pharm 268(2):188–200

    Article  CAS  Google Scholar 

  • Ally A, Buist R, Mills P, Reuhl K (1993) Effects of methylmercury and trimethyltin on cardiac, platelet, and aorta eicosanoid biosynthesis and platelet serotonin release. Pharmacol Biochem Be 44(3):555–563

    Article  CAS  Google Scholar 

  • Almenara CCP, Broseghini-Filho GB, Vescovi VAV, Angeli JK, Faria TO, Stefanon I, Vassallo DV, Padilha AS (2013) Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta. PLoS One 8(7):e68418

    Article  CAS  Google Scholar 

  • Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, Lieberman EH, Ganz P, Creager MA, Yeung AC, Selwyn AP (1995) Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 26(5):1235–1241

  • Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. Environ Int 34(2):292–308

    Article  CAS  Google Scholar 

  • Barbacanne MA, Rami J, Michel JB, Souchard JP, Philippe M, Besombes JP, Bayard F, Arnal JF (1999) Estradiol increases rat aorta endothelium-derived relaxing factor (EDRF) activity without changes in endothelial NO synthase gene expression: possible role of decreased endothelium-derived superoxide anion production. Cardiovasc Res 41(3):672–681

    Article  CAS  Google Scholar 

  • Bo E, Farinetti A, Marraudino M, Sterchele D, Eva C, Gotti S, Panzica G (2016) Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice. Andrology 4(4):723–734

    Article  CAS  Google Scholar 

  • Bryan GW, Gibbs PE, Hummerstone LG, Burt GR (1986) The decline of the gastropod Nucella lapillus around South-West England: evidence for the effect of tributyltin from antifouling paints. J Mar Biol Assoc UK 66:611–640

    Article  CAS  Google Scholar 

  • Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844

    Article  CAS  Google Scholar 

  • Camporez JP, Akamine EH, Davel AP, Celso, Franci CR, Rossoni LV, Carvalho CRO (2011) Dehydroepiandrosterone protects against oxidative stress-induced endothelial dysfunction in ovariectomized rats. J Physiol 589(10):2585–2596

    Article  CAS  Google Scholar 

  • Ceravolo GS, Filgueira FP, Costa TJ, Lobato NS, Chignalia AZ, Araujo PX, Tostes RC, Dantas AP, Fortes ZB, Carvalho MH (2012) Conjugated equine estrogen treatment corrected the exacerbated aorta oxidative stress in ovariectomized spontaneously hypertensive rats. Steroids 78(3):341–346

    Article  Google Scholar 

  • Chen QZ, Han WQ, Chen J, Zhu DL, Chen-Yan GPJ (2013) Anti-stiffness effect of apocynin in deoxycorticosterone acetate-salt hypertensive rats via inhibition of oxidative stress. Hypertens Res 36:306–312

    Article  CAS  Google Scholar 

  • Cheng DY, Feng CJ, Kadowitz PJ, Gruetter CA (1994) Effects of 17 beta-estradiol on endothelium-dependent relaxation induced by acetylcholine in female rat aorta. Life Sci 55(10):PL187–PL191

    Article  CAS  Google Scholar 

  • Cooke GM (2006) Toxicology of tributyltin in mammalian animal models. Immunol, Endocr Metab Agents Med Chem 6:63–71

    Article  CAS  Google Scholar 

  • Costa MB, Zamprogno GC, Pedruzzi FC, Morais L, Tognella MMP, Godoi AFL, Santos DM, Marchi MRR, Fernandez MA (2014) Differential organotionsensitivy in two Leucozonia species from a ship traffic area southeastern Brazil. Mar Biol Res 10(7):712–724

    Article  Google Scholar 

  • Coutinho JV, Freitas-Lima LC, Freitas FF, Freitas FP, Podratz PL, Magnago RP, Porto ML, Meyrelles SS, Vasquez EC, Brandão PA, Carneiro MT, Paiva-Melo FD, Miranda-Alves L, Silva IV, Gava AL, Graceli JB (2016) Tributyltin chloride induces renal dysfunction by inflammation and oxidative stress in female rats. Toxicol Lett 260(1):52–69

    Article  CAS  Google Scholar 

  • Díaz MFFP, Acosta M, Mohamed FH, Ferramola ML, Oliveros LB, Gimenez MS (2013) Protective effect of soybeans as protein source in the diet against cadmium-aorta redox and morphological alteration. Toxicol Appl Pharm 272(3):806–815

    Article  Google Scholar 

  • dos Santos RL, Podratz PL, Sena GC, Delgado Filho VS, Lopes PFI, Gonçalves WLS, Alves LM, Samoto VY, Takiya CM, Miguel EC, Moyses MR, Graceli JB (2012) Tributyltin impairs the coronary vasodilation induced by 17 beta-estradiol in the isolated rat heart. J Toxicol Env Heal A 75(16–17):1–13

    Google Scholar 

  • dos Santos DM, Turra A, de Marchi MR, Montone RC (2016) Distribution of butyltin compounds in Brazil’s southern and southeastern estuarine ecosystems: assessment of spatial scale and compartments. Environ Sci Pollut Res Int 23(16):16152–16163

    Article  Google Scholar 

  • European Food Safety Authority (2004) Opinion of the scientific panel on contaminants in the food chain on a request from the Commission to assess the health risks to consumers associated with exposure to organotins in foodstuffs. EFSA J 102(1):1–119

    Google Scholar 

  • Fiorim J, Júnior RFR, Azevedo BF, Simões MR, Padilha AS, Stefanon I, Alonso MJ, Salaices M, Vassallo DV (2012) Activation of K+ channels and Na+/K+ ATPase prevents aortic endothelial dysfunction in 7-day lead-treated rats. Toxicol Appl Pharm 262(1):22–31

    Article  CAS  Google Scholar 

  • Furchgott RF (1983) Role of endothelium in responses of vascular smooth muscle. Circ Res 53(5):557–573

    Article  CAS  Google Scholar 

  • Galloway TS (2006) Biomarkers in environmental and human health risk assessment. Mar Pollut Bull 53(10–12):606–613

    Article  CAS  Google Scholar 

  • Guzik TJ, West NE, Black E, McDonald D, Ratnatunga C, Pillai R, Channon KM (2000) Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res 86(9):E85–E90

    Article  CAS  Google Scholar 

  • Hartwell SI, Apeti DA, Mason AL, Pait AS (2016) An assessment of butyltins and metals in sediment cores from the St. Thomas East End Reserves, USVI. Environ Monit Assess 188(11):642

    Article  Google Scholar 

  • Hermes-Lima M, Willmore WG, Storey KB (1995) Quantification of lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation. Free Radical Bio Med 19(3):271–280

    Article  CAS  Google Scholar 

  • Hoch M (2001) Organotin compounds in the environment—an overview. Appl Geochem 16:719–743

    Article  CAS  Google Scholar 

  • Hutchinson PJ, Palmer RM, Moncada S (1987) Comparative pharmacology of EDRF and nitric oxide on vascular strips. Eur J Pharmacol 141(3):445–451

    Article  CAS  Google Scholar 

  • IPCS (1999) Concise international chemical assessment documents, no.13, Triphenyltin compounds, World Health Organization, Geneva

  • Ishihara Y, Kawami T, Ishida A, Yamazaki T (2012) Tributyltin induces oxidative stress and neuronal injury by inhibiting glutathione S-transferase in rat organotypic hippocampal slice cultures. Neurochem Int 60(8):782–790

    Article  CAS  Google Scholar 

  • Isomura M, Kotak Y, Masuda K, Miyara M, Okuda K, Samizo S, Sanoh S, Hosoi T, Ozawa K, Ohta S (2013) Tributyltin-induced endoplasmic reticulum stress and its Ca2+−mediated mechanism. Toxicol Appl Pharm 272(1):137–146

    Article  CAS  Google Scholar 

  • Janero DR, Burghardt B (1989) Thiobarbituric acid-reactive malondialdehyde formation during superoxide-dependent, iron-promoted lipid peroxidation: influence of peroxidation conditions. Lipids 24(2):125–131

    Article  CAS  Google Scholar 

  • Janieck MF, Haseltine WA, Henner WD (1985) Malondialdehyde precursors in gamma-irradiated DNA, deoxynucleotides, deoxynucleosides. Nucleic Acids Res 13(24):9011–9029

    Article  Google Scholar 

  • Kannan K, Senthilkumar K, Giesy JP (1999) Occurrence of butyltin compounds in human blood. Environ Sci Technol 33(10):1776–1779

    Article  CAS  Google Scholar 

  • Kato T, Tada-Oikawa S, Wang L, Murata M, Kuribayashi K (2013) Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation. Toxicol Appl Pharm 273(1):10–18

    Article  CAS  Google Scholar 

  • Kinlay S, Ganz P (1997) Role of endothelial dysfunction in coronary artery disease and implications for therapy. Am J Cardiol 80(9A):11I–16I

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30(2):235–248

    Article  CAS  Google Scholar 

  • Kotrikla A (2009) Environmental management aspects for TBT antifouling wastes from the shipyards. J Environ Manag 90:77–85

    Article  Google Scholar 

  • Ma FX, Liu LY, Xiong XM (2003) Protective effects of lovastatin on vascular endothelium injured by low density lipoprotein. Acta Pharmacol Sin 24(10):1027–1032

    CAS  Google Scholar 

  • Merlo E, Podratz PL, Sena GC, de Araújo JF, Lima LC, Alves IS, Gama-de-Souza LN, Pelição R, Rodrigues LC, Brandão PA, Carneiro MT, Pires RG, Martins-Silva C, Alarcon TA, Miranda-Alves L, Silva IV, Graceli JB (2016) The environmental pollutant tributyltin chloride disrupts the hypothalamic-pituitary-adrenal axis at different levels in female rats. Endocrinology. https://doi.org/10.1210/en.2015-1896

  • Mitra S, Siddiqui WA, Khandelwal S (2015) Differential susceptibility of brain regions to tributyltin chloride toxicity. Environ Toxicol 30(12):1393–1405

    Article  CAS  Google Scholar 

  • Morton B (2009) Recovery from imposex by a population of the dogwhelk, Nucella lapillus (Gastropoda: Caenogastropoda), on the southeastern coast of England since May 2004: a 52-month study. Mar Pollut Bull 58:1530–1538

    Article  CAS  Google Scholar 

  • Nakanishi T (2007) Potential toxicity of organotin compound via nuclear receptor signalling in mammals. J Health Sci 53(1):1–9

    Article  CAS  Google Scholar 

  • Nielsen JB, Strand J (2002) Butyltin compounds in human liver. Environ Res 88(2):129–133

    Article  CAS  Google Scholar 

  • Penninks AH (1993) The evaluation of data-derived safety factors for bis (tri-n-butyltin) oxide. Food Addit Contam 10(3):351–361

    Article  CAS  Google Scholar 

  • Poli G, Dianzani MU, Cheeseman KH, Staler TF, Lang J, Esterbauer H (1985) Separation and characterization of the aldehydic products of lipid peroxidation stimulated by carbon tetrachloride or ADP-iron in isolated rat hepatocytes and rat liver microsomal suspensions. Biochem J 227(2):629–638

    Article  CAS  Google Scholar 

  • Rakesh K, Subrahmanyam VM, Jawahar K, Kailash P (1996) Time course study of oxidative stress in aorta and heart of diabetic rat. Clin Sci 91(4):441–448 (Printed in Great Britain)

    Article  Google Scholar 

  • Ribeiro Junior RF, Marques VB, Nunes DO, Ronconi Kde S, de Araújo JF, Rodrigues PL, Padilha AS, Vassallo DV, Graceli JB, Stefanon I (2016) Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats. Toxicol Appl Pharmacol 295(1):26–36

    Article  Google Scholar 

  • Rodrigues SML, Ximenes CF, Batista PR, Simões FV, Coser PHP, Sena GC, Podratz PL, Souza LNG, Vassallo DV, Graceli JB, Stefanon I (2014) Tributyltin contributes in reducing the vascular reactivity to phenylephrine in isolated aortic rings from female rats. Toxicol Lett 225(3):378–385

    Article  CAS  Google Scholar 

  • Sagredo A, Campo L, Martorell A, Navarro R, Martín MC, Rivero JB, Ferrer M (2013) Ovariectomy increases the participation of hyperpolarizing mechanisms in the relaxation of rat aorta. PLoS One 8(9):e73474

    Article  CAS  Google Scholar 

  • Sartório CL, Pinto VD, Cutini S, Vassallo DV, Stefanon I (2005) Effects of inducible nitric oxide synthase inhibition on the rat tail vascular bed reactivity three days after myocardium infarction. J Cardiovasc Pharmacol 45(4):321–326

    Article  Google Scholar 

  • Solomon R, Krishnamurty V (1992) The effect of tributyltin chloride on vascular responses to atrial natriuretic peptide. Toxicology 76(1):39–47

    Article  CAS  Google Scholar 

  • Sorensen KE, Celermajer DS, Georgakopoulos D, Hatcher G, Betteridge DJ, Deanfield JE (1994) Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein (a) level. J Clin Invest 93(1):50–55

    Article  CAS  Google Scholar 

  • Stephen EA, Venkatasubramaniam A, Good TA, Topoleski LD (2014) The effect of oxidation on the mechanical response and microstructure of porcine aortas. J Biomed Mater Res A 102:3255–3262

    Article  Google Scholar 

  • Takahashi S, Mukai H, Tanabe S, Sakayama K, Miyazaki T, Masuno H (1999) Butyltin residues in livers of humans and wild terrestrial mammals and in plastic products. Environ Pollut 106(2):213–218

    Article  CAS  Google Scholar 

  • Ti Y, Xie G, Wang Z, Ding W, Zhang Y, Zhong M, Zhang W (2015) Tribbles 3: a potential player in diabetic aortic remodeling. Diabetes Vas Dis Re 13(1):69–80

    Article  Google Scholar 

  • Tostes RC, Nigro D, Fortes ZB, Carvalho MHC (2003) Effects of estrogen on the vascular system. Braz J Med Biol Res 36(9):1143–1158

    Article  CAS  Google Scholar 

  • Vanhoutte PM (1988) The endothelium-modulator of vascular smooth-muscle tone. N Engl J Med 319(8):512–513

    Article  CAS  Google Scholar 

  • Wiggers GA, Peçanha FM, Briones AM, Pérez-Girón JV, Miguel M, Vassallo DV, Cachofeiro V, Alonso MJ, Salaices M (2008) Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries. Am J Physiol Heart Circ Physiol 295:H1033–H1043

    Article  CAS  Google Scholar 

  • Whalen MM, Loganathan BG, Kannan K (1999) Immunotoxicity of environmentally relevant concentrations of butyltins on human natural killer cells in vitro. Environ Res 81(2):108–116

  • WHO (1999) Concise international chemical assessment document, IPCS-Report No. 14, Tributyltin oxide, World Health Organization, Geneva

  • Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KR, Xiao L, Chen W, Mernaugh RL, Cai H, Bernstein KE, Goronzy JJ, Weyand CM, Curci JA, Barbaro NR, Moreno H, Davies SS, Roberts LJ, Madhur MS, Harrison DG (2016) Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126(1):50–67

    Article  Google Scholar 

  • Yoshizuka M, Hara K, Doi Y, Mori N, Yokoyama M, Ono E, Fujimoto S (1992) The toxic effects of bis (tributyltin) oxide on the rat thoracic aorta. Histol Histopathol 7(3):445–449

    CAS  Google Scholar 

  • Zuo Z, Chen S, Wu T, Zhang J, Su Y, Chen Y, Wang C (2011) Tributyltin causes obesity and hepatic steatosis in male mice. Environ Toxicol 26(1):79–85

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES), “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq 201806/2015-0-455294/2014-3) and “Fundação de Amparo à Pesquisa do Espírito Santo” (FAPES no. 0609-2015) in Brazil. We thank the Laboratory of Cellular Ultrastructure-UFES (grant: MCT/FINEP/CT-INFRA—PROINFRA 01/2006) for the development of the SEM protocols; the Laboratory of Molecular Histology and Immunohistochemistry at UFES for the development of the DHE protocols; and the Laboratory of Biochemistry and Molecular Biophysics of Proteins at UFES for the development of the TBARS protocols. We thank Scott Holt for checking and improving the use of the English language in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jones Bernardes Graceli or Ivanita Stefanon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ximenes, C.F., Rodrigues, S.M.L., Podratz, P.L. et al. Tributyltin chloride disrupts aortic vascular reactivity and increases reactive oxygen species production in female rats. Environ Sci Pollut Res 24, 24509–24520 (2017). https://doi.org/10.1007/s11356-017-0061-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0061-8

Keywords

Navigation