Skip to main content
Log in

Acute and chronic toxicity of diuron and carbofuran to the neotropical cladoceran Ceriodaphnia silvestrii

  • Ecotoxicology in Tropical Regions
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In order to contribute to the increase of the body of knowledge on the sensitivity of tropical indigenous species to pesticides, acute and chronic toxicity tests were conducted with the neotropical cladoceran Ceriodaphnia silvestrii. Tests were carried out with the active ingredients diuron and carbofuran and one of their commercial formulations, the Diuron Nortox® 500 SC and the Furadan® 350 SC, respectively. For carbofuran, the active ingredient was more toxic than the commercial product, whereas for diuron, the commercial product appeared more toxic. In addition, hormetic effects on fertility were recorded for intermediate diuron concentrations. Acute and chronic toxicity data indicated that C. silvestrii was among the most sensitive invertebrate species for both test compounds. Based on concentrations measured in Brazilian water bodies, these compounds represent ecological risks for causing direct and indirect toxic effects on C. silvestrii and other aquatic organisms. Our results support previous claims on the advantages of using native species to better tune ecological risk assessment of chemicals in tropical ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ABNT–Associação Brasileira de Normas Técnicas (2004) NBR 12713. Aquatic ecotoxicology—acute toxicity—test with Daphnia spp. (Crustacea, Cladocera), Rio de Janeiro, Brazil

  • ABNT–Associação Brasileira de Normas Técnicas (2005) NBR 13373. Aquatic ecotoxicology—chronic toxicity—test with Ceriodaphnia spp. (Crustacea, Cladocera), Rio de Janeiro, Brazil

  • Ahmed M, Latif N, Khan RA, Ahmad A (2012) Toxicological effect of herbicides (diuron and bentazon) on snake venom and electric eel acetylcholinesterase. B Environ Contam Tox 89:229–233

    Article  CAS  Google Scholar 

  • Aldenberg T, Jaworska JS (2000) Uncertainty of hazardous concentrations and fraction affected for normal species sensitivity distributions. Ecotox Environ Safe 46:1–18

    Article  CAS  Google Scholar 

  • Baldwin DH, Spromberg JA, Collier TK, Scholz NL (2009) A fish of many scales: extrapolating sublethal pesticide exposures to the productivity of wild salmon populations. Ecol Appl 19(8):2004–2015

    Article  Google Scholar 

  • Beggel S, Werner I, Connon RE, Geist JP (2010) Sublethal toxicity of commercial insecticide formulations and their active ingredients to larval fathead minnow (Pimephales promelas). Sci Total Environ 408(16):3169–3175

    Article  CAS  Google Scholar 

  • Bretaud S, Toutant JP, Saglio P (2000) Effects of carbofuran, diuron, and nicosulfuron on acetylcholinesterase activity in goldfish (Carassius auratus). Ecotox Environ Safe 47:117–124

    Article  CAS  Google Scholar 

  • Britto FB, Vasco, Pereira APS, Júnior M, Vieira A, Nogueira LC (2012) Herbicides in the upper Poxim River, Sergipe, and the risk of contamination of water resources. Rev Ciênc Agron 43:390–398 (in Portuguese)

  • Brock TCM, Lahr J, Van den Brink PJ (2000) Ecological risks of pesticides in freshwater ecosystems. Part 1: Herbicides. Alterra-Rapport 008, Wageningen, the Netherlands.

  • Brock TCM, Van Wijngaarden RPA (2012) Acute toxicity tests with Daphnia magna, Americamysis bahia, Chironomus riparius and Gammarus pulex and implications of new EU requirements for the aquatic effect assessment of insecticides. Environ Sci Pollut R 19:3610–3618

    Article  CAS  Google Scholar 

  • Bui TKL, DoHong LC, Dao TS, Hoang TC (2016) Copper toxicity and the influence of water quality of Dongnai River and Mekong River waters on copper bioavailability and toxicity to three tropical species. Chemosphere 144:872–878

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2002) Defining hormesis. Hum Exp Toxicol 21(2):91–97

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003) Hormesis: the dose-response revolution. Annu Rev Pharmacol Toxicol 43:175–197

    Article  CAS  Google Scholar 

  • Caldas S, Primel E, Zanella R (2011) Risk estimate of water contamination and occurrence of pesticide in the south of Brazil. In Kortekamp A (ed) Herbicides and Environment. INTECH Open Access Publisher, pp 471–492

  • Cappelini LTD, Cordeiro D, Brondi SHG, Prieto KR, Vieira E.M (2012) Development of methodology for determination of pesticides residue in water by SPE/HPLC/DAD. Environ Technol 33:2299–2304

  • Carbo L, Souza V, Dores EF, Ribeiro ML (2008) Determination of pesticides multiresidues in shallow groundwater in a cotton-growing region of Mato Grosso, Brazil. J Braz Chem Soc 19(6):1111–1117

    Article  CAS  Google Scholar 

  • Casali-Pereira MP, Daam MA, Resende JC, Vasconcelos AM, Espíndola EL, Botta CM (2015) Toxicity of Vertimec® 18 EC (active ingredient abamectin) to the neotropical cladoceran Ceriodaphnia silvestrii. Chemosphere 139:558–564

    Article  CAS  Google Scholar 

  • Cedergreen N, Streibig J, Kudsk P, Mathiassen SK, Duke SO (2007) The occurrence of hormesis in plants and algae. Dose-Response 5:150–162

    Article  CAS  Google Scholar 

  • Cox C, Surgan M (2006) Unidentified inert ingredients in pesticides: implications for human and environmental health. Environ Health Perspect 114:1803–1806

    Article  CAS  Google Scholar 

  • Daam MA, Van den Brink PJ (2010) Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides. Ecotoxicology 19:24–37

    Article  CAS  Google Scholar 

  • Dantas ADB, Paschoalato CF, Martinez MS, Ballejo RR, Di Bernardo L (2011) Removal of diuron and hexazinone from Guarany aquifer groundwater. Braz J Chem Eng 28:415–424

    Article  Google Scholar 

  • Do Hong LC, Becker-Van Slooten K, Tarradellas J (2004) Tropical ecotoxicity testing with Ceriodaphnia cornuta. Environ Toxicol 19:497–504

    Article  CAS  Google Scholar 

  • Dores EF, Spadotto CA, Weber OL, Carbo L, Vecchiato AB, Pinto AA (2009) Environmental behaviour of metolachlor and diuron in a tropical soil in the central region of Brazil. Water Air Soil Poll 197:175–183

    Article  CAS  Google Scholar 

  • EC–European Commission (2004a). Draft Assessment Report (DAR)—public version—initial risk assessment provided by the Rapporteur Member State Denmark for the existing active substance diuron of the second stage of the review programme referred to in Article 8 (2) of Council Directive 91/414/EEC

  • EC–European Commission (2004b) Draft Assessment Report (DAR)—public version—initial risk assessment provided by the Rapporteur Member State Belgium for the existing active substance carbofuran of the second stage of the review programme referred to in Article 8 (2) of Council Directive 91/414/EEC

  • EFSA (2013) Guidance on tiered risk assessment for plant protection products for aquatic organisms in the edge-of-field surface waters. EFSA J 11:3290

    Article  CAS  Google Scholar 

  • Faggiano L, de Zwart D, García-Berthou E, Lek S, Gevrey M (2010) Patterning ecological risk of pesticide contamination at the river basin scale. Sci Total Environ 408(11):2319–2326

    Article  CAS  Google Scholar 

  • Fonseca AL, Rocha O (2004) The life-cycle of Ceriodaphnia silvestrii Daday, 1902, a neotropical endemic species (Crustacea, Cladocera, Daphnidae). Acta Limnol Bras 16(4):319–328

    Google Scholar 

  • Forbes VE (2000) Is hormesis an evolutionary expectation? Funct Ecol 14:12–24

    Article  Google Scholar 

  • Freitas EC, Rocha O (2011) Acute toxicity tests with the tropical cladoceran Pseudosida ramosa: the importance of using native species as test organisms. Arch Environ Con Tox 60(2):241–249

    Article  CAS  Google Scholar 

  • Freitas EC, Rocha O (2012) Acute and chronic effects of atrazine and sodium dodecyl sulfate on the tropical freshwater cladoceran Pseudosida ramosa. Ecotoxicology 21(5):1347–1357

    Article  CAS  Google Scholar 

  • Garcia MV (2004) Effects of pesticides on soil fauna: development of ecotoxicological test methods for tropical regions. Ecology and Development Series No.19. Zentrum für Entwicklungsforschung. University of Bonn, Germany

  • Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032

    Article  CAS  Google Scholar 

  • Guilherme S, Santos MA, Barroso C, Gaivão I, Pacheco M (2012) Differential genotoxicity of roundup® formulation and its constituents in blood cells of fish (Anguilla anguilla): considerations on chemical interactions and DNA damaging mechanisms. Ecotoxicology 21(5):1381–1390

    Article  CAS  Google Scholar 

  • Gulley DD, Boetter AM, Bergman HL (1991) TOXSTAT release 3.3. Laramie, University of Wyoming

  • IBAMA–Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2014) Relatórios de Comercialização de Agrotóxicos—Boletim Anual de Produção, Importação, Exportação e Vendas de Agrotóxicos no Brasil. http://www.ibama.gov.br/areas-tematicas-qa/relatorios-de-comercializacao-de-agrotoxicos/pagina-3. Accessed 09 May 2016

  • Ibrahim ATA, Harabawy AS (2014) Sublethal toxicity of carbofuran on the African catfish Clarias gariepinus: hormonal, enzymatic and antioxidant responses. Ecotox Environ Safe 106:33–39

    Article  CAS  Google Scholar 

  • IRAC–Insecticide Resistance Action Committee (2016) Mode of action classification. http://www.irac-online.org/. Accessed 04 April 2016

  • ISO 10706 (2000) Water quality—determination of long term toxicity of substances to Daphnia magna Straus (Cladocera, Crustacea). International Organization for Standardization, Geneva

    Google Scholar 

  • Iwai CB, Somparn A, Noller B (2011) Using zooplankton, Moina micrura Kurz to evaluate the ecotoxicology of pesticides used in paddy fields of Thailand. In Stoytcheva M (ed) Pesticides in the Modern World—Risks and Benefits. INTECH Open Access Publisher, pp 267–280

  • Jager T, Barsi A, Ducrot V (2013) Hormesis on life-history traits: is there such thing as a free lunch? Ecotoxicology 22(2):263–270

    Article  CAS  Google Scholar 

  • Kaonga CC, Takeda K, Sakugawa H (2015) Diuron, Irgarol 1051 and fenitrothion contamination for a river passing through an agricultural and urban area in Higashi Hiroshima City, Japan. Sci Total Environ 518-519:450–458

    Article  CAS  Google Scholar 

  • Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I Review on occurrence and levels Environ Pollut 141(3):555–570

    CAS  Google Scholar 

  • Kroon FJ, Hook SE, Metcalfe S, Jones D (2015) Altered levels of endocrine biomarkers in juvenile barramundi, Lates calcarifer (Bloch), following exposure to commercial herbicide and surfactant formulations. Environ Toxicol Chem 34(8):1881–1890

    Article  CAS  Google Scholar 

  • Kwok KW, Leung KM, Lui GS, Chu VK, Lam PK, Morritt D, Crane M (2007) Comparison of tropical and temperate freshwater animal species’ acute sensitivities to chemicals: implications for deriving safe extrapolation factors. Integr Environ Assess Manag 3:49–67

    Article  CAS  Google Scholar 

  • Lacher TE, Goldstein MI (1997) Tropical ecotoxicology: status and needs. Environ Toxicol Chem 16:100–111

    Article  CAS  Google Scholar 

  • Lazhar M, Hela T, Moncef B, Néji AA (2012) Toxicity of three selected pesticides (alachlor, atrazine and diuron) to the marine fish (turbot Psetta maxima). Afr J Biotechnol 11(51):11321–11328

    CAS  Google Scholar 

  • Leboulanger C, Schwartz C, Somville P, Diallo AO, Pagano M (2011) Sensitivity of two Mesocyclops (Crustacea, Copepoda, Cyclopidae), from tropical and temperate origins, to the herbicides, diuron and paraquat, and the insecticides, temephos and fenitrothion. B Environ Con Tox 87(5):487–493

    Article  CAS  Google Scholar 

  • Li S, Tan Y (2011) Hormetic response of cholinesterase from Daphnia magna in chronic exposure to triazophos and chlorpyrifos. J Environ Sci 23(5):852–859

    Article  CAS  Google Scholar 

  • Loro VL, Murussi C, Menezes C, Leitemperger J, Severo E, Guerra L, Costa M, Perazzo GX, Zanella R (2015) Spatial and temporal biomarkers responses of Astyanax jacuhiensis (cope, 1894) (Characiformes: Characidae) from the middle rio Uruguai, Brazil. Neotrop Ichthyol 13(3):569–578

    Article  Google Scholar 

  • Lopes I, Moreira-Santos M, Silva EM, Sousa JP, Guilhermino L, Soares AM, Ribeiro R (2007) In situ assays with tropical cladocerans to evaluate edge-of-field pesticide runoff toxicity. Chemosphere 67:2250–2256

    Article  CAS  Google Scholar 

  • Luna-Acosta A, Renault T, Thomas-Guyon H, Faury N, Saulnier D, Budzinski H, Menach KL, Pardon P, Fruitier-Arnaudin I, Bustamante P (2012) Detection of early effects of a single herbicide (diuron) and a mix of herbicides and pharmaceuticals (diuron, isoproturon, ibuprofen) on immunological parameters of Pacific oyster (Crassostrea gigas) spat. Chemosphere 87(11):1335–1340

    Article  CAS  Google Scholar 

  • Maltby L, Blake N, Brock TCM, Van den Brink PJ (2005) Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24:379–288

    Article  CAS  Google Scholar 

  • Mansano AS, Moreira RA, Pierozzi M, Oliveira TM, Vieira EM, Rocha O, Regali-Seleghim MH (2016) Effects of diuron and carbofuran pesticides in their pure and commercial forms on Paramecium caudatum: the use of protozoan in ecotoxicology. Environ Pollut 213:160–172

    Article  CAS  Google Scholar 

  • Masiá A, Campo J, Navarro-Ortega A, Barceló D, Picó Y (2015) Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data. Sci Total Environ 503-504:58–68

    Article  CAS  Google Scholar 

  • Moreira RA, Mansano AS, Silva LCD, Rocha O (2014) A comparative study of the acute toxicity of the herbicide atrazine to cladocerans Daphnia magna, Ceriodaphnia silvestrii and Macrothrix flabelligera. Acta Limnol Bras 26(1):1–8

    Article  CAS  Google Scholar 

  • Moreira RA, Mansano AS, Rocha O (2015) The toxicity of carbofuran to the freshwater rotifer, Philodina roseola. Ecotoxicology 24(3):604–615

    Article  CAS  Google Scholar 

  • Müller H (1972) Wachstum and phosphatbedarf von Nitzschia actinastroides (Lemn.) v. Goor in statischer und homokontiuierliecher kultur unter phosphatlimitierung. Arch Hydrobiol 38:399–484

    Google Scholar 

  • Mullin CA (2015) Effects of inactive ingredients on bees. Curr Opin Insect Sci 10:194–200

    Article  Google Scholar 

  • Noguerol TN, Boronat S, Casado M, Raldúa D, Barceló D, Piña B (2006) Evaluating the interactions of vertebrate receptors with persistent pollutants and antifouling pesticides using recombinant yeast assays. Anal Bioanal Chem 385:1012–1019

    Article  CAS  Google Scholar 

  • Orton F, Lutz I, Kloas W, Routledge EJ (2009) Endocrine disrupting effects of herbicides and pentachlorophenol: in vitro and in vivo evidence. Environ Sci Technol 43(6):2144–2150

    Article  CAS  Google Scholar 

  • Palma P, Palma VL, Matos C, Fernandes RM, Bohn A, Soares AMVM, Barbosa IR (2009) Effects of atrazine and endosulfan sulphate on the ecdysteroid system of Daphnia magna. Chemosphere 74:676–681

    Article  CAS  Google Scholar 

  • Papadakis EN, Tsaboula A, Kotopoulou A, Kintzikoglou K, Vryzas Z, Papadopoulou-Mourkidou E (2015) Pesticides in the surface waters of Lake Vistonis Basin, Greece: occurrence and environmental risk assessment. Sci Total Environ 536:793–802

    Article  CAS  Google Scholar 

  • Paschoalato C, Dantas A, Rosa I, Faleiros R, Bernardo LD (2008) Use of activated carbon to remove the herbicides diuron and hexazinone from water. Revista DAE 179:34–41 (in Portuguese)

    Google Scholar 

  • Pereira JL, Antunes SC, Castro BB, Marques CR, Goncalves AMM, Goncalves F, Pereira R (2009) Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology 18:455–463

    Article  CAS  Google Scholar 

  • Pessoa PC, Luchmann KH, Ribeiro AB, Veras MM, Correa JRMB, Nogueira AJ, Bainy ACD, Carvalho PSM (2011) Cholinesterase inhibition and behavioral toxicity of carbofuran on Oreochromis niloticus early life stages. Aquat Toxicol 105(3):312–320

    Article  CAS  Google Scholar 

  • Racke KD (2003) What do we know about the fate of pesticides in tropical ecosystems? Environmental fate and effects of pesticides ACS Symposium Series 853:96–123

    Article  CAS  Google Scholar 

  • Ribeiro ACA, Dores EFGC, Amorim RSS, Lourencetti C (2013) Pesticide residues in surface waters at the headwaters of São Lourenço River-MT, Brazil: validation of a method using solid-phase extraction and liquid chromatography. Química Nov. 36(2):284–290 (in Portuguese)

  • Rico A, Van den Brink PJ (2011) Effects of malathion and carbendazim on Amazonian freshwater organisms: comparison of tropical and temperate species sensitivity distributions. Ecotoxicology 20:625–634

    Article  CAS  Google Scholar 

  • Rigotto RM, Vasconcelos DP, Rocha MM (2014) Pesticide use in Brazil and problems for public health. Cadernos de Saúde Pública 30(7):1360–1362

    Article  Google Scholar 

  • Santos MAPF, Melão MG, Lombardi AT (2006) Life history characteristics and production of Ceriodaphnia silvestrii Daday (Crustacea, Cladocera) under different experimental conditions. Acta Limnol Brasil 18(3):199–212

    Google Scholar 

  • Schreinemachers P, Tipraqsa P (2012) Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37:616–626

    Article  Google Scholar 

  • Silva PMCS, Van Gestel CAM (2009) Comparative sensitivity of Eisenia andrei and Perionyx excavatus in earthworm avoidance tests using two soil types in the tropics. Chemosphere 77:1609–1613

    Article  CAS  Google Scholar 

  • StatSoft Inc. (2004) STATISTICA (data analysis software system), version 7. http://www.statsoft.com. Accessed 13 April 2015

  • Tyne W, Little S, Spurgeon DJ, Svendsen C (2015) Hormesis depends upon the life-stage and duration of exposure: examples for a pesticide and a nanomaterial. Ecotox Environ Safe 120:117–123

    Article  CAS  Google Scholar 

  • Van Dam RA, Camilleri C, Bayliss P, Markich SJ (2004) Ecological risk assessment of tebuthiuron following application on tropical Australian wetlands. Human Ecol Risk Assess 10:1069–1097

    Article  CAS  Google Scholar 

  • Van den Brink PJ, Blake N, Brock TCM, Maltby L (2006) Predictive value of species sensitivity distributions for effects of herbicides in freshwater ecosystems. Hum Ecol Risk Assess 12:645–674

    Article  CAS  Google Scholar 

  • Van Vlaardingen P, Traas TP, Wintersen AM, Aldenberg T (2004) ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data. RIVM report no. 601501028/2004. National Institute of Public Health and the Environment (RIVM), Bilthoven

    Google Scholar 

  • Wightwick A, Allinson G (2007) Pesticide residues in Victorian waterways: a review. Australas J Ecotox 13:91–112

    CAS  Google Scholar 

  • Zalizniak L, Nugegoda D (2006) Effect of sublethal concentrations of chlorpyrifos on three successive generations of Daphnia carinata. Ecotox Environ Safe 64(2):207–214

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Council for Scientific and Technological Development (CNPq) and the Brazilian Higher Level Education Council (CAPES) for the financial support and the Brazilian government Special Visiting Researcher program (MEC/MCTI/CAPES/CNPq/FAPs reference 402392/2013-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrislaine S. Mansano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Thomas Braunbeck

Electronic supplementary material

ESM 1

(DOCX 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansano, A.S., Moreira, R.A., Dornfeld, H.C. et al. Acute and chronic toxicity of diuron and carbofuran to the neotropical cladoceran Ceriodaphnia silvestrii . Environ Sci Pollut Res 25, 13335–13346 (2018). https://doi.org/10.1007/s11356-016-8274-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8274-9

Keywords

Navigation