Skip to main content

Advertisement

Log in

Enhanced iron(III) reduction following amendment of paddy soils with biochar and glucose modified biochar

  • Research in soil pollution and remediation in China
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Although biochar application to paddy fields has been widely studied, its effects on Fe(III) reduction have not yet been investigated. Paddy soil slurry and soil microbial inoculation incubation were conducted with unmodified biochar (UMB) or glucose-modified biochar (GMB) additions at different particle sizes. The Fe(II) concentration and pH value were determined regularly, and Fe(III) reducing capacity (FeRC) was evaluated by modeling. Fe(III) reduction potential (a) was increased by 0–1.96 mg g−1 in response to UMBs addition, and a more remarkable increase in a was related to the decrease of particle size. The dissolved organic carbon of UMBs was responsible for the majority of the biochar reducing capacity. UMBs addition increased the contribution of free Fe and nitrate nitrogen to FeRC, while it decreased that of available phosphorus. Moreover, GMBs led to greater promotion of FeRC than the corresponding UMBs, with an increase in a of 2.9–16% in soil slurry and reduction rate of 13–35% in microbial inoculation incubation. The maximum Fe(III) reduction rate (V max) with GMBs addition was faster or invariable than UMBs, while the time to V max (T Vmax) was shorter or stable. The effect of GMBs on Fe(III) reduction was less sensitive as GMB particle size increased. Compared with UMBs addition, pH declined remarkably in response to GMBs. These findings suggest that GMBs can effectively stimulate Fe(III) reduction in paddy fields, while simultaneously alleviating the pH increase usually caused by pristine biochar application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Fe(III):

Iron(III)

Ox-Fe:

Amorphous Fe (oxalate-extractable Fe)

DCB-Fe:

Free iron (sodium hydrosulfite-sodium citrate-sodium bicarbonate-extractable Fe)

DOC:

Dissolved organic carbon

UMBs:

Unmodified biochars

GMBs:

Glucose-modified biochars

FeRC:

Fe(III) reducing capacity

a :

Fe(III) reduction potential

V max :

Maximum Fe(III) reduction rate

T Vmax :

Time to maximum Fe(III) reduction rate

CCA:

Canonical correspondence analysis

References

  • Ameloot N, Graber ER, Verheijen FGA, De-Neve S (2013) Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci 64:379–390. doi:10.1111/ejss.12064

    Article  CAS  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320. doi:10.1016/j.pedobi.2011.07.005

    Article  CAS  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. doi:10.1007/s11104-010-0464-5

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282. doi:10.1016/j.envpol.2011.07.023

    Article  CAS  Google Scholar 

  • Blair GJ, Lefroy RDB, Lisle L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res 46:1459–1466. doi:10.1071/AR9951459

    Article  Google Scholar 

  • Bongoua-Devisme AJ, Cebron A, Kassin KE, Yoro GR, Mustin C, Berthelin J (2013) Microbial communities involved in Fe reduction and mobility during soil organic matter (SOM) mineralization in two contrasted paddy soils. Geomicrobiol J 30:347–361. doi:10.1080/01490451.2012.688928

    Article  CAS  Google Scholar 

  • Bongoua-Devisme AJ, Mustin C, Berthelin J (2012) Responses of iron-reducing bacteria to salinity and organic matter amendment in paddy soils of Thailand. Pedosphere 22:375–393. doi:10.1016/s1002-0160(12)60024-1

    Article  CAS  Google Scholar 

  • Chen M, Shih K, Hu M, Li F, Liu C, Wu W, Tong H (2012) Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China. J Agric Food Chem 60:2967–2975. doi:10.1021/jf204134w

    Article  CAS  Google Scholar 

  • Cui HJ, Wang MK, Fu ML, Ci E (2011) Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J Soils Sediments 11:1135–1141. doi:10.1007/s11368-011-0405-9

    Article  CAS  Google Scholar 

  • Ding Z, Hu X, Wan Y, Wang S, Gao B (2016) Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests. J Ind Eng Chem 33:239–245. doi:10.1016/j.jiec.2015.10.007

    Article  CAS  Google Scholar 

  • Easton ZM, Rogers M, Davis M, Wade J, Eick M, Bock E (2015) Mitigation of sulfate reduction and nitrous oxide emission in denitrifying environments with amorphous iron oxide and biochar. Ecol Eng 82:605–613. doi:10.1016/j.ecoleng.2015.05.008

    Article  Google Scholar 

  • Feng C, Yue X, Li F, Wei C (2013) Bio-current as an indicator for biogenic Fe(II) generation driven by dissimilatory iron reducing bacteria. Biosensors & Bioelectronics 39:51–56. doi:10.1016/j.bios.2012.06.037

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230. doi:10.1007/s00374-002-0466-4

    Article  CAS  Google Scholar 

  • Graber ER, Tsechansky L, Lew B, Cohen E (2014) Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe. Eur J Soil Sci 65:162–172. doi:10.1111/ejss.12071

    Article  CAS  Google Scholar 

  • He JZ, Qu D (2008) Dissimilatory Fe(III) reduction characteristics of paddy soil extract cultures treated with glucose or fatty acids. J Environ Sci 20:1103–1108. doi:10.1016/S1001-0742(08)62156-7

    Article  CAS  Google Scholar 

  • Herath HMSK, Camps-Arbestain M, Hedley M (2013) Effect of biochar on soil physical properties in two contrasting soils: an alfisol and an andisol. Geoderma 209:188–197. doi:10.1016/j.geoderma.2013.06.016

    Article  CAS  Google Scholar 

  • Heymann K, Lehmann J, Solomon D, Schmidt MWI, Regier T (2011) C 1s K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy for characterizing functional group chemistry of black carbon. Org Geochem 42:1055–1064. doi:10.1016/j.orggeochem.2011.06.021

    Article  CAS  Google Scholar 

  • Hori T, Aoyagi T, Itoh H, Narihiro T, Oikawa A, Suzuki K, Ogata A, Friedrich MW, Conrad R, Kamagata Y (2015) Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Front Microbiol 6:386–401. doi:10.3389/fmicb.2015.00386

    Article  Google Scholar 

  • Hoy CW, Grewal PS, Lawrence JL, Jagdale G, Acosta N (2008) Canonical correspondence analysis demonstrates unique soil conditions for entomopathogenic nematode species compared with other free-living nematode species. Biol Control 46:371–379. doi:10.1016/j.biocontrol.2008.06.001

    Article  CAS  Google Scholar 

  • Jaeckel U, Schnell S (2000) Suppression of methane emission from rice paddies by ferric iron fertilization. Soil Biol Biochem 32:1811–1814. doi:10.1016/S0038-0717(00)00094-8

    Article  Google Scholar 

  • Jia R, Li LN, Qu D (2015) pH shift-mediated dehydrogenation and hydrogen production are responsible for microbial iron(III) reduction in submerged paddy soils. J Soils Sediments 15:1178–1190. doi:10.1007/s11368-015-1084-8

    Article  CAS  Google Scholar 

  • Johnston SG, Burton ED, Aaso T, Tuckerman G (2014) Sulfur, iron and carbon cycling following hydrological restoration of acidic freshwater wetlands. Chem Geol 371:9–26. doi:10.1016/j.chemgeo.2014.02.001

    Article  CAS  Google Scholar 

  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Soil Research 48:501–515. doi:10.1071/SR10009

    Article  CAS  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14. doi:10.1016/j.geoderma.2010.03.009

    Article  CAS  Google Scholar 

  • Kammann C, Ratering S, Eckhard C, Muller C (2012) Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J Environ Qual 41:1052–1066. doi:10.2134/jeq2011.0132

    Article  CAS  Google Scholar 

  • Kappler A, Wuestner ML, Ruecker A, Harter J, Halama M, Behrens S (2014) Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environmental Science & Technology Letters 1:339–344. doi:10.1021/ez5002209

    Article  CAS  Google Scholar 

  • Khan MA, Kim KW, Mingzhi W, Lim BK, Lee WH, Lee JY (2007) Nutrient-impregnated charcoal: an environmentally friendly slow-release fertilizer. Environmentalist 28:231–235. doi:10.1007/s10669-007-9133-5

    Article  Google Scholar 

  • Klupfel L, Keiluweit M, Kleber M, Sander M (2014) Redox properties of plant biomass-derived black carbon (biochar). Environmental Science & Technology 48:5601–5611. doi:10.1021/es500906d

    Article  CAS  Google Scholar 

  • Koide RT, Petprakob K, Peoples M (2011) Quantitative analysis of biochar in field soil. Soil Biol Biochem 43:1563–1568. doi:10.1016/j.soilbio.2011.04.006

    Article  CAS  Google Scholar 

  • Kumar N, Omoregie EO, Rose J, Masion A, Lloyd JR, Diels L, Bastiaens L (2014) Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. Water Res 51:64–72. doi:10.1016/j.watres.2013.09.042

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836. doi:10.1016/j.soilbio.2011.04.022

    Article  CAS  Google Scholar 

  • Lehours AC, Rabiet M, Morel-Desrosiers N, Morel JP, Jouve L, Arbeille B, Mailhot G, Fonty G (2010) Ferric iron reduction by fermentative strain BS2 isolated from an iron-rich anoxic environment (Lake Pavin, France). Geomicrobiol J 27:714–722. doi:10.1080/01490451003597663

    Article  CAS  Google Scholar 

  • Lehours AC, Batisson I, Guedon A, Mailhot G, Fonty G (2009) Diversity of culturable bacteria, from the anaerobic zone of the meromictic Lake Pavin, able to perform dissimilatory-iron reduction in different in vitro conditions. Geomicrobiol J 26:212–223. doi:10.1080/01490450902744012

    Article  CAS  Google Scholar 

  • Lentini CJ, Wankel SD, Hansel CM (2012) Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front Microbiol 3:1–19. doi:10.3389/fmicb.2012.00404

    Article  Google Scholar 

  • Liang C, Gascó G, Fu S, Méndez A, Paz-Ferreiro J (2016) Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size. Soil Tillage Res 164:3–10. doi:10.1016/j.still.2015.10.002

    Article  Google Scholar 

  • Li HJ, Peng JJ, Weber KA, Zhu YG (2011) Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil: enrichment cultures with different short-chain fatty acids as electron donors. J Soils Sediments 11:1234–1242. doi:10.1007/s11368-011-0371-2

    Article  CAS  Google Scholar 

  • Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, Xu W, Liu TX, Feng CH (2010) Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environ Pollut 158:1733–1740. doi:10.1016/j.envpol.2009.11.020

    Article  CAS  Google Scholar 

  • Li X, Zhang W, Liu T, Chen L, Chen P, Li F (2016) Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy soil. Soil Biol Biochem 94:70–79. doi:10.1016/j.soilbio.2015.11.013

    Article  CAS  Google Scholar 

  • Li Y, Yu S, Strong J, Wang H (2012) Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox environments? J Soils Sediments 12:683–693. doi:10.1007/s11368-012-0507-z

    Article  CAS  Google Scholar 

  • Liu Y, Li FB, Xia W, Xu JM, Yu XS (2013) Association between ferrous iron accumulation and pentachlorophenol degradation at the paddy soil-water interface in the presence of exogenous low-molecular-weight dissolved organic carbon. Chemosphere 91:1547–1555. doi:10.1016/j.chemosphere.2012.12.040

    Article  CAS  Google Scholar 

  • Lovley DR (1987) Organic matter mineralization with the reduction of ferric iron: a review. Geomirobiology Journal 5:375–399. doi:10.1080/01490458709385975

    Article  CAS  Google Scholar 

  • Lovley DR (2006) Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp. 635–658. doi:10.1007/0-387-30742-7-21

    Chapter  Google Scholar 

  • Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    CAS  Google Scholar 

  • Myers CR, Myers JM (1993) Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by Shewanella putrefaciens MR-1. FEMS Microbiol Lett 114:215–222. doi:10.1111/j.1574-6968.1993.tb06576.x 215-222

    Article  CAS  Google Scholar 

  • Myers JM, Antholine WE, Myers CR (2004) Vanadium(V) reduction by Shewanella oneidensis MR-1 requires menaquinone and cytochromes from the cytoplasmic and outer membranes. Appl Environ Microbiol 70:1405–1412. doi:10.1128/aem.70.3.1405-1412.2004

    Article  CAS  Google Scholar 

  • Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97. doi:10.1038/35011098

    Article  CAS  Google Scholar 

  • Page AL (1982) Methods of soil analysis, part 2: chemical and microbiological properties. American Society of Agronomy Press, Madison

  • Payne K, Abdel-Fattah T (2005) Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength. J Environ Sci Health A 40:723–749. doi:10.1081/ese-200048254

    Article  CAS  Google Scholar 

  • Peng QA, Shaaban M, Hu R, Mo Y, Wu Y, Ullah B (2015) Effects of soluble organic carbon addition on CH4 and CO2 emissions from paddy soils regulated by iron reduction processes. Soil Research 53:316–324. doi:10.1071/sr14287

    Article  CAS  Google Scholar 

  • Peter Mayer H, Conrad R (1990) Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil. FEMS Microbiol Lett 73:103–111. doi:10.1016/0378-1097(90)90656-B

    Article  Google Scholar 

  • Qian W, Zhao AZ, Xu RK (2013) Sorption of As(V) by aluminum-modified crop straw-derived biochars. Water Air Soil Pollution 224:1610–1615. doi:10.1007/s11270-013-1610-5

    Article  CAS  Google Scholar 

  • Quilliam RS, Glanville HC, Wade SC, Jones DL (2013) Life in the ‘charosphere’—does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biol Biochem 65:287–293. doi:10.1016/j.soilbio.2013.06.004

    Article  CAS  Google Scholar 

  • Ren X, Zhang P, Zhao L, Sun H (2016) Sorption and degradation of carbaryl in soils amended with biochars: influence of biochar type and content. Environ Sci Pollut Res 23:2724–2734. doi:10.1007/s11356-015-5518-z

    Article  CAS  Google Scholar 

  • Takai Y, Koyama T, Kamura T (1963) Microbial metabolism in reduction process of paddy soils (part 2). Soil Science and Plant Nutrition 9:10–14. doi:10.1080/00380768.1963.10431049

    Article  Google Scholar 

  • Trchounian K, Pinske C, Sawers RG, Trchounian A (2012) Characterization of Escherichia coli [NiFe]-hydrogenase distribution during fermentative growth at different pHs. Cell Biochemistry Biophysics 62:433–440. doi:10.1007/s12013-011-9325-y

    Article  CAS  Google Scholar 

  • Wang H, Gao B, Wang S, Fang J, Xue Y, Yang K (2015) Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour Technol 197:356–362. doi:10.1016/j.biortech.2015.08.132

    Article  CAS  Google Scholar 

  • Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW (2014) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175C:391–395. doi:10.1016/j.biortech.2014.10.104

    Article  CAS  Google Scholar 

  • Wang X, Chen X, Yang J, Wang Z, Sun G (2009) Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil. J Environ Sci 21:1562–1568. doi:10.1016/S1001-0742(08)62456-0

    Article  CAS  Google Scholar 

  • Whittleston RA, Stewart DI, Mortimer RJG, Burke IT (2013) Enhancing microbial iron reduction in hyperalkaline, chromium contaminated sediments by pH amendment. Appl Geochem 28:135–144. doi:10.1016/j.apgeochem.2012.10.003

    Article  CAS  Google Scholar 

  • Xu G, Lv YC, Sun JN, Shao HB, Wei LL (2012) Recent advances in biochar applications in agricultural soils: benefits and environmental implications. Clean-Soil Air Water 40:1093–1098. doi:10.1002/clen.201100738

    Article  CAS  Google Scholar 

  • Yi WJ, Wang BL, Qu D (2012) Diversity of isolates performing Fe(III) reduction from paddy soil fed by different organic carbon sources. Afr J Biotechnol 11: 4407–4417. doi:10.5897/ajb11.1216

  • Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497. doi:10.1016/j.biortech.2010.11.018

    Article  CAS  Google Scholar 

  • Zhang AF, Bian RJ, Pan GX, Cui LQ, Hussain Q, Li LQ, Zheng JW, Zheng JF, Zhang XH, Han XJ, Yu XY (2012) Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crop Res 127:153–160. doi:10.1016/j.fcr.2011.11.020

    Article  Google Scholar 

  • Zhu C, Xia SH, Wang BL, Qu D (2011) Variation of Anaeromyxobacter community structure and abundance in paddy soil slurry over flooding time. African Journal of Agricultural Reseearch 6:6107–6118. doi:10.5897/ajar11.1159

    Article  Google Scholar 

  • Zuo X, Liu Z, Chen M (2016) Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar. Bioresour Technol 207:262–267. doi:10.1016/j.biortech.2016.02.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this paper was provided by the Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau of China (Grant No. A318009902-1509) and the National Natural Science Foundation of China (Grant No. and 41571239). The authors were grateful for the anonymous reviewers for their quality comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Qu.

Additional information

Responsible editor: Roberto Terzano

Electronic supplementary material

ESM 1

(DOCX 248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, R., Li, L., Qu, D. et al. Enhanced iron(III) reduction following amendment of paddy soils with biochar and glucose modified biochar. Environ Sci Pollut Res 25, 91–103 (2018). https://doi.org/10.1007/s11356-016-8081-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8081-3

Keywords

Navigation