Skip to main content
Log in

Rapid metal extractability tests from polluted mining soils by ultrasound probe sonication and microwave-assisted extraction systems

  • Global pollution problems, Trends in Detection and Protection
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ultrasonic probe sonication (UPS) and microwave-assisted extraction (MAE) were used for rapid single extraction of Cd, Cr, Cu, Ni, Pb, and Zn from soils polluted by former mining activities (Mónica Mine, Bustarviejo, NW Madrid, Spain), using 0.01 mol L−1 calcium chloride (CaCl2), 0.43 mol L−1 acetic acid (CH3COOH), and 0.05 mol L−1 ethylenediaminetetraacetic acid (EDTA) at pH 7 as extracting agents. The optimum extraction conditions by UPS consisted of an extraction time of 2 min for both CaCl2 and EDTA extractions and 15 min for CH3COOH extraction, at 30% ultrasound (US) amplitude, whereas in the case of MAE, they consisted of 5 min at 50 °C for both CaCl2 and EDTA extractions and 15 min at 120 °C for CH3COOH extraction. Extractable concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The proposed methods were compared with a reduced version of the corresponding single extraction procedures proposed by the Standards, Measurements and Testing Programme (SM&T). The results obtained showed a great variability on extraction percentages, depending on the metal, the total concentration level and the soil sample, reaching high values in some areas. However, the correlation analysis showed that total concentration is the most relevant factor for element extractability in these soil samples. From the results obtained, the application of the accelerated extraction procedures, such as MAE and UPS, could be considered a useful approach to evaluate rapidly the extractability of the metals studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in the terrestrial environment. Biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York

    Google Scholar 

  • Alvarenga PM, Araújo MF, Silva JAL (2004) Elemental uptake and root-leaves transfer in Cistus ladanifer L. growing in a contaminated pyrite mining area (Aljustrel-Portugal). Water Air Soil Poll 152:81–96. doi:10.1023/B:WATE.0000015333.24165.5e

    Article  CAS  Google Scholar 

  • Antosiewicz DM, Escudĕ-Duran C, Wierzbowska E, Skłodowska A (2008) Indigenous plant species with the potential for the phytoremediation of arsenic and metals contaminated soils. Water Air Soil Poll 193:197–210. doi:10.1007/s11270-008-9683-2

    Article  CAS  Google Scholar 

  • Anawar HM, García-Sánchez A, Santa Regina I (2008) Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Chemosphere 70:1459–1467. doi:10.1016/j.chemosphere.2007.08.058

    Article  CAS  Google Scholar 

  • Arain MB, Kazi TG, Jamali MK, Jalbani N, Afridi HI, Baig JA (2008) Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: a comparison with modified sequential extraction procedure. J Hazard Mater 154:998–1006. doi:10.1016/j.jhazmat.2007.11.004

    Article  CAS  Google Scholar 

  • De la Calle I, Cabaleiro N, Lavilla I, Bendicho C (2013) Ultrasound-assisted single extraction tests for rapid assessment of metal extractability from soils by total reflection X-ray fluorescence. J Hazard Mater 260:202–209. doi:10.1016/j.jhazmat.2013.05.021

    Article  CAS  Google Scholar 

  • Fedotov PS, Kördel W, Miró M, Peijnenburg WJGM, Wennrich R, Huang PM (2012) Extraction and fractionation methods for exposure assessment of trace metals, metalloids, and hazardous organic compounds in terrestrial environments. Crit Rev Env Sci Tech 42:1117–1171. doi:10.1080/10643389.2011.556544

    Article  CAS  Google Scholar 

  • García-Casillas D, García-Salgado S, Quijano MA (2014) Accuracy evaluation of ultrasound probe sonication and microwave-assisted extraction systems for rapid single extraction of metals in soils. Anal Methods 6:8403–8412. doi:10.1039/c4ay01788a

    Article  Google Scholar 

  • García-Salgado S, García-Casillas D, Quijano-Nieto MA, Bonilla-Simón MM (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Poll 223:559–572. doi:10.1007/s11270-011-0882-x

    Article  Google Scholar 

  • Houba VJG, Temminghoff EJM, Gaikhorst GA, Van Vark W (2000) Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci Plant Anal 31:1299–1396. doi:10.1080/00103620009370514

    Article  CAS  Google Scholar 

  • Jamali MK, Kazi TG, Arain MB, Afridi HI, Jalbani N, Kandhro GA, Shah AQ, Baig JA (2009) Speciation of heavy metals in untreated sewage sludge by using microwave assisted sequential extraction procedure. J Hazard Mater 163:1157–1164. doi:10.1016/j.jhazmat.2008.07.071

    Article  CAS  Google Scholar 

  • Jung MC (2008) Contamination by Cd, Cu, Pb, and Zn in mine wastes from abandoned metal mines classified as mineralization types in Korea. Environ Geochem Health 30:205–217. doi:10.1007/s10653-007-9109-x

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2004) Soil-plant transfer of trace elements—an environmental issue. Geoderma 122:143–149. doi:10.1016/j.geoderma.2004.01.004

    Article  CAS  Google Scholar 

  • Kazi TG, Jamali MK, Siddiqui A, Kazi GH, Arain MB, Afridi HI (2006) An ultrasonic assisted extraction method to release heavy metals from untreated sewage sludge samples. Chemosphere 63:411–420. doi:10.1016/j.chemosphere.2005.08.056

    Article  CAS  Google Scholar 

  • Krasnodębska-Ostręga B, Kaczorowska M, Golimowski J (2006) Ultrasound-assisted extraction for the evaluation of element mobility in bottom sediment collected at mining and smelting Pb–Zn ores area in Poland. Microchim Acta 154:39–43. doi:10.1007/s00604-006-0497-x

    Article  Google Scholar 

  • Lesniewska B, Swierad E, Lukowski A, Wiater J, Godlewska-Zylkiewicz B (2014) Ultrasound assisted extraction for determination of mobile fractions of copper in soil. Rocz Panstw Zakl Hig 65:67–74

    CAS  Google Scholar 

  • Li JS, Xue Q, Wang P, Zhang TT (2015) Enhanced washing for Cr(VI) removal from contaminated soil using EDTA and microwave radiation. Environ Earth Sci 74:2167–2172. doi:10.1007/s12665-015-4206-0

    Article  CAS  Google Scholar 

  • Li Q, Zhou J, Chen B, Huang B, Zeng X, Zhan J, Pan X (2014) Toxic metal contamination and distribution in soils and plants of a typical metallurgical industrial area in southwest of China. Environ Earth Sci 72:2101–2109. doi:10.1007/s12665-014-3118-8

    Article  CAS  Google Scholar 

  • Meers E, Du Laing G, Unamuno V, Ruttens A, Vangronsveld J, Tack FMG, Verloo MG (2007) Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma 141:247–259. doi:10.1016/j.geoderma.2007.06.002

    Article  CAS  Google Scholar 

  • Menzies NW, Donn MJ, Kopittke PM (2007) Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ Pollut 145:121–130. doi:10.1016/j.envpol.2006.03.021

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Peñalosa JM, Manzano R, Carpena-Ruíz RO, Gamarra R, Esteban E (2009) Heavy metals distribution in soils surrounding and abandoned mine in MW Madrid (Spain) and their transference to wild flora. J Hazard Mater 162:854–859. doi:10.1016/j.jhazmat.2008.05.109

    Article  Google Scholar 

  • ORD 2770/2006 MAD (2006) Orden 2770/2006, de 11 de agosto, Consejería de Medio Ambiente y Ordenación del Territorio, Comunidad de Madrid, B.O.C.M. Núm. 204, Lunes 28 de agosto de 2006. pp. 29–30. http://www.madrid.org/wleg_pub/secure/normativas/contenidoNormativa.jsf;jsessionid=2476FF62F75913A96D8363E290B07118.p0313335?opcion=VerHtml&nmnorma=4097&cdestado=P#no-back-button

  • Pérez Cid B, de Jesús GM, Fernández Gómez E (2002) Comparison of single extraction procedures, using either conventional shaking or microwave heating, and the Tessier sequential extraction method for the fractionation of heavy metals from environmental samples. Analyst 127:681–688. doi:10.1039/b110943j

    Article  Google Scholar 

  • Pueyo M, López-Sánchez JF, Rauret G (2004) Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal Chim Acta 504:217–226. doi:10.1016/j.aca.2003.10.047

    Article  CAS  Google Scholar 

  • Pueyo M, Sahuquillo A, Rigol A, López-Sánchez JF, Rauret G (2005) A new quality control soil material for monitoring trace metals in accidentally polluted areas. Anal Chim Acta 533:41–49. doi:10.1016/j.aca.2004.10.078

    Article  CAS  Google Scholar 

  • Quevauviller Ph, Rauret G, Griepink B (1993) Single and sequential extraction in sediments and soils. Int J Environ Anal Chem 51:231–235. doi:10.1080/03067319308027629

    Article  Google Scholar 

  • Quevauviller P, Rauret G, Rubio R, López-Sánchez JF, Ure A, Bacon J, Muntau H (1997) Certified reference materials for the quality control of EDTA- and acetic acid-extractable contents of trace elements in sewage sludge amended soils (CRMs 483 and 484). Fresenius J Anal Chem 357:611–618. doi:10.1007/s002160050222

    Article  CAS  Google Scholar 

  • Quevauviller Ph (2002) Operationally-defined extraction procedures for soil and sediment analysis. Part 3: new CRMs for trace-element extractable contents. TrAC Trends Anal Chem 21:774–785. doi:10.1016/S0165-9936(02)01105-6

    Article  CAS  Google Scholar 

  • Rao CRM, Sahuquillo A, Lopez Sanchez JF (2008) A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water Air Soil Poll 189:291–333. doi:10.1007/s11270-007-9564-0

    Article  CAS  Google Scholar 

  • Relić D, Đorđević D, Sakan S, Anđelković I, Pantelić A, Stanković R, Popović A (2013) Conventional, microwave, and ultrasound sequential extractions for the fractionation of metals in sediments within the Petrochemical Industry, Serbia. Environ Monit Assess 185:7627–7645. doi:10.1007/s10661-013-3124-4

    Article  Google Scholar 

  • Remeteiová D, Ružičková S, Rusnák R (2008) Ultrasound-assisted extraction in the fractionation analysis of gravitation dust sediments. Microchim Acta 163:257–261. doi:10.1007/s00604-008-0005-6

    Article  Google Scholar 

  • Sahuquillo A, Rigol A, Rauret G (2003) Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. TrAC Trends Anal Chem 22:152–159. doi:10.1016/S0165-9936(03)00303-0

    Article  CAS  Google Scholar 

  • Takeda A, Tsukada H, Takaku Y, Hisamatsu S, Inaba J, Nanzyo M (2006) Extractability of major and trace elements from agricultural soils using chemical extraction methods: application for phytoavailability assessment. Soil Sci Plant Nutr 52:406–417. doi:10.1111/j.1747-0765.2006.00066.x

    Article  CAS  Google Scholar 

  • Tessier A, Campbell P, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851. doi:10.1021/ac50043a017

    Article  CAS  Google Scholar 

  • Wang WS, Shan WQ, Wen B, Zhang SZ (2003) Relationship between the extractable metals from soils and metals taken up by maize roots and shoots. Chemosphere 53:523–530. doi:10.1016/S0045-6535(03)00518-6

    Article  CAS  Google Scholar 

  • Wang JM, Jiang JG, Li D, Li TR, Li KM, Tian SC (2015) Removal of Pb and Zn from contaminated soil by different washing methods: the influence of reagents and ultrasound. Environ Sci Pollut R 22:20084–20091. doi:10.1007/s11356-015-5219-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Ministerio de Educación y Ciencia (Project CTM2007-66432) and Universidad Politécnica de Madrid (Project GI115815203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara García-Salgado.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Salgado, S., Quijano, M.Á. Rapid metal extractability tests from polluted mining soils by ultrasound probe sonication and microwave-assisted extraction systems. Environ Sci Pollut Res 23, 24567–24577 (2016). https://doi.org/10.1007/s11356-016-7999-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7999-9

Keywords

Navigation