Skip to main content

Advertisement

Log in

Appraisal of a hybrid air cleaning process

  • Environmental Photocatalysis and Photochemistry for a Sustainable World: A Big Challenge
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nowadays, there is an amplified interest in maintaining suitable indoor air quality (IAQ). Besides a wide range of available interventions, air cleaners are considered a valuable tool, since based on inexpensive and easily implementing technologies to improve IAQ. The purpose of this work is to combine the TiO2-photocatalysis with the electrostatic and adsorption processes, in order to improve efficiency and reliability. A TiO2-photocatalytic oxidation combined with an electrostatic filter has been studied. Nitrogen oxides reduction and degradation of many VOC over different catalyst support were monitored jointly with CO and CO2 production. The coupling of photocatalysis with an external electric field enhances efficiency of the process. The choice of materials with diversified adsorptive characteristics plays an important role in the durability of the process over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arana J et al (2003) TiO2 activation by using activated carbon as a support: part I. Surface characterisation and decantability study. Appl Catal B Environ 44:161–172

    Article  CAS  Google Scholar 

  • Bulanin KM, Lavalley JC, Tsyganenkot AA (1995) Infrared study of ozone adsorption on TiO2 (Anatase). J Phys Chem 99:10294–10298

    Article  CAS  Google Scholar 

  • Chang, J.-S., Lawless, P. A. & Yamamoto, T., 1991. Corona discharge processes. IEEE Transactions on Plasma Science 1152–1166.

  • Chen M, Jin L, Liu Y, Guo X, Chu J (2014) Decomposition of NO in automobile exhaust by plasma-photocatalysis synergy. Environ Sci Pollut Res 21:1242–1247

    Article  CAS  Google Scholar 

  • Fann N et al (2012) Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal 32:81–95

    Article  Google Scholar 

  • Fava, G. & Pierpaoli, M., 2015a. A hybrid photocatalytic-electrostatic reactor for nitrogen oxides removal. American Journal of Environmental Engineering and Science 7–13.

  • Fava G, Pierpaoli M (2015b) Volatile organic compounds removal in a hybrid photocatalytic-electrostatic reactor. Am J Environ Eng Sci 2:14–17

    Google Scholar 

  • Fujishima A, Rao NT, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  • Geoffrey, B. & Ian, G., 2011. Interfacial science: an introduction. s.l.:OUP Oxford.

  • Gunschera J, Markewitz D, Bansen B, Salthammer T, Ding H (2016) Portable photocatalytic air cleaners: efficiencies and by-product generation. Environ Sci Pollut Res 23(8):7482–7493

    Article  CAS  Google Scholar 

  • Guo YF, Ye DQ, Chen KF, He JC, Chen WL (2006) Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. J Mol Catal A Chem 245(1):93–100

    Article  CAS  Google Scholar 

  • Haiqiang W, Zhongbiao W, Weirong Z, Baohong G (2007) Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric. Chemosphere 66(1):185–190

    Article  Google Scholar 

  • Henderson MA (2011) A surface science perspective on photocatalysis. Surf Sci Rep 66(6–7):185–297

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Hüsken, G., Hunger, M., Ballari, M. M. & Brouwers, H. J. H., 2009. The effect of various process conditions on the photocatalytic degradation of NO. In: Nanotechnology in Construction 3. s.l.: Springer Berlin Heidelberg, pp. 223–229

  • Jacoby A et al (2012) Heterogeneous photocatalysis for control of volatile organic compounds in indoor air. J Air Waste Manage Assoc 46:891–898

    Article  Google Scholar 

  • Jinze L, Lizhong Z (2013) Highly efficient indoor air purification using adsorption-enhanced photocatalysis-based microporous TiO2 at short residence time. Environ Technol 34:1447–1454

    Article  Google Scholar 

  • Jo WK, Yang CH (2009) Feasibility of a tandem photocatalytic oxidation–adsorption system for removal of monoaromatic compounds at concentrations in the sub-ppm-range. Chemosphere 77(2):236–241

    Article  CAS  Google Scholar 

  • Kadoya K, Matsunaga N, Nagashima A (1985) Viscosity and thermal conductivity of dry air in the gaseous phase. J Phys Chem Ref Data 14:947–970

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  CAS  Google Scholar 

  • Metts T, Batterman S (2006) Effect of VOC loading on the ozone removal efficiency of activated carbon filters. Chemosphere 62:34–44

    Article  CAS  Google Scholar 

  • Obee TN, Brown RT (1995) TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ Sci Technol 29:1223–1231

    Article  CAS  Google Scholar 

  • Ogata A, Ito D, Mizuno K, Kushiyama S, Yamamoto T (2001) Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE Trans Ind Appl 37(4):959–964

    Article  CAS  Google Scholar 

  • Parker, K., 2012. Applied electrostatic precipitation. s.l.: Springer Science & Business Media

  • Vincent B et al (2014) Formation of indoor nitrous acid (HONO) by light-induced NO2 heterogeneous reactions with white wall paint. Environ Sci Pollut Res 21:9259–9269

    Article  Google Scholar 

  • Viner AS, Lawless PA, Ensor DS, Sparks LE (1992) Ozone generation in DC-energized electrostatic precipitators. IEEE Trans Ind Appl 28:504–512

    Article  CAS  Google Scholar 

  • Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube–TiO2 composites. Adv Mater 21:2233–2239

    Article  CAS  Google Scholar 

  • Xiao G, Xu W, Wu R, Ni M, Du C, Gao X, Cen K (2014) Non-thermal plasmas for VOCs abatement. Plasma Chem Plasma Process 34(5):1033–1065

    Article  CAS  Google Scholar 

  • Yu QL, Brouwers HJH (2009) Indoor air purification using heterogeneous photocatalytic oxidation. Part I: experimental study. Appl Catal B Environ 92(3):454–461

    Article  CAS  Google Scholar 

  • Yu KP, Lee GWM (2007) Decomposition of gas-phase toluene by the combination of ozone and photocatalytic oxidation process (TiO2/UV, TiO2/UV/O3, and UV/O3). Appl Catal B Environ 75:29–38

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Pierpaoli.

Additional information

Responsible editor: Constantini Samara

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierpaoli, M., Giosuè, C., Ruello, M.L. et al. Appraisal of a hybrid air cleaning process. Environ Sci Pollut Res 24, 12638–12645 (2017). https://doi.org/10.1007/s11356-016-7880-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7880-x

Keywords

Navigation