Skip to main content
Log in

Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson ME (1985) Determination of glutathione and glutathione disulphide in biological samples. Methods Enzymol 113:548–555

    Article  CAS  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB (2014) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exptl Bot 65(2):527–538

    Article  CAS  Google Scholar 

  • Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Bray CM, West CE (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168:511–528

    Article  CAS  Google Scholar 

  • Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G, Radi R, Cayota AM (1999) Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol 162:3356–3366

  • Butt YKC, Lum JHK, Lo SCL (2003) Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216:762–771

    CAS  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Internatl Microbiol 3:3–8

    CAS  Google Scholar 

  • Chakdar H, Pabbi S (2012) Morphological characterization and molecular fingerprinting of Nostoc strains by multiplex RAPD. Microbiol 81:710–720

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidases. Meth Enzymol 2:764–775

    Article  Google Scholar 

  • Chen K, Feng H, Zhang M, Wang X (2003) Nitric oxide alleviates oxidative damage in the green alga Chlorella pyrenoidosa caused by UV-B radiation. Folia Microbiol 48:389–393

    Article  CAS  Google Scholar 

  • Cosentino F, Eto M, De Paolis P, van der Loo B, Bachschmid M, Ullrich V, Kouroedov A, Gatti CD, Joch H, Volpe M, Lüscher TF (2003) High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells role of protein kinase C and reactive oxygen species. Circulation. 107:1017–23.

  • Cutruzzola ÁF (1999) Bacterial nitric oxide synthesis. Biochem Biophys Acta 1411:231–249

    CAS  Google Scholar 

  • Demple B (1999) Genetic responses against nitric oxide toxicity. Braz J Med Biol Res 32:1417–1427

    Article  CAS  Google Scholar 

  • Dionisio-Sese MI, Tobita S (1998) Antioxidant response of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  CAS  Google Scholar 

  • Garcia-Mata C, Lamattina L (2003) Abscisic acid, nitric oxide and stomatal closure is nitrate reductase one of the missing links? Trends Plant Sci 8:20–26

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I, Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  Google Scholar 

  • Go YM, Patel RP, Maland MC, Park H, Beckman JS, Darley-Usmar VM, Jo H (1999) Evidence for peroxynitrite as a signaling molecule in flow-dependent activation of c-Jun NH(2)-terminal kinase. Am J Physiol 277:1647–1653

    Google Scholar 

  • Graziano M, Lamattina L (2005) Nitric oxide and iron in plants: an emerging and converging story. Trends Plant Sci 10:4–8

    Article  CAS  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  CAS  Google Scholar 

  • Gusarove I, Nudler E (2005) NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Nat Acad Sci USA 102:13855–13860

    Article  Google Scholar 

  • Hagege D, Kevers C, Boucaud J, Duyme M, Gaspar T (1990a) Polyamines, phospholipids and peroxides in normal and habituated sugar beet calli. J Plant Physiol 136:641–645

    Article  CAS  Google Scholar 

  • Hagege D, Nouvelot A, Boucaud J, Gaspar T (1990b) Malondialdehyde titration with thiobarbiturate in plant extracts: avoidance of pigment interference. Phytochem Anal 1:86–89

    Article  Google Scholar 

  • He YY, Hader DP (2002) Involvement of reactive oxygen species in the UV-B damage to the cyanobacterium Anabaena sp. J Photochem Photobiol B: Biol 66:73–80

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183:411–425

    Article  CAS  Google Scholar 

  • Hong JK, Yun BW, Kang JG, Raja MU, Kwon E, Sorhagen K, Chu C, Wang Y, Loake GJ (2008) Nitric oxide function and signalling in plant disease resistance. J Exp Bot 59:147–154

    Article  CAS  Google Scholar 

  • Hughes MN (1999) Relationships between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochem Biophys Acta 1411:263–272

    CAS  Google Scholar 

  • Hyenstrand P, Rydin E, Gunnerhed M (2000) Response of pelagic cyanobacteria to iron additions—enclosure experiments from Lake Erken. J Plankton Res 22:1113–1126

    Article  CAS  Google Scholar 

  • Kaushik MS, Mishra AK (2015) Iron induced modifications in physiological attributes and SDS-PAGE of whole cell proteins pattern of Anabaena PCC 7120 and its derivative ntcA mutant. Indian J Biotechnol 14:87–93

    CAS  Google Scholar 

  • Kaushik MS, Srivastava M, Verma E, Mishra AK (2015a) Role of manganese in protection against oxidative stress under iron starvation in cyanobacterium Anabaena 7120. J Basic Microbiol 54:1–12

    Google Scholar 

  • Kaushik MS, Singh P, Tiwari B, Mishra AK (2015b) Ferric Uptake Regulator (FUR) protein: properties and implications in cyanobacteria. Ann Microbiol 66:61–75

    Article  Google Scholar 

  • Koen E, Szymańsk K, Klinguer A, Dobrowolsk G, Besson-Bard A, Wendehenne D (2012) Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana plants grown under iron deficiency. Plant Sig Behav 7(10):1246–1250

    Article  CAS  Google Scholar 

  • Labuschagne CF (2007) The effect of auto haemotherapy with different ozone concentrations on the oxidant/antioxidant status and DNA integrity of baboons. Dissertation submitted in fulfilment of the requirements for the degree Master of Science in Biochemistry at the North-West University, pp 13–14

  • Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278

    Article  CAS  Google Scholar 

  • Lipton SA, Yun-Beom CH, Pan ZH, Lei SZ, Chen HSV, Sucher NJ, Singel DJ, Loscalzo J, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  CAS  Google Scholar 

  • Liu W, Li PJ, Qi XM, Zhou QX, Zheng L, Sun TH, Yang YS (2005) DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere 61:158–167

    Article  CAS  Google Scholar 

  • Lyra C, Hantula J, Vainio E, Rapala J, Rouhiainen L, Sivonen K (1997) Characterization of cyanobacteria by SDS-PAGE of whole-cell proteins and PCR/RFLP of the 16S rRNA gene. Arch Microbiol 168:176–184

    Article  CAS  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Mallick N, Mohn FH, Soeder CJ, Grobbelaar JU (2002) Ameliorative role of nitric oxide on H2O2 toxicity to a chlorophycean alga Scenedesmus obliquus. J Gen Appl Microbiol 48:1–7

    Article  CAS  Google Scholar 

  • Marshall HE, Merchant K, Stamler JS (2000) Nitrosation and oxidation in the regulation of gene expression. FASEB Journal 14:1889–1900

    Article  CAS  Google Scholar 

  • Martin M, Colman MJR, Gomez-Casati DF, Lamattina L, Zabaleta EJ (2009) Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants. FEBS Lett 583:542–548

    Article  CAS  Google Scholar 

  • Martinez GR, Mascio PD, Bonini MG, Augusto O, Briviba K, Sies H, Maurer P, Röthlisberger U, Herold S, Koppenol WH (2000) Peroxynitrite does not decompose to singlet oxygen (1∆gO2) and nitroxyl (NO-). Proc Nat Acad Sci USA 97:10307–10312

    Article  CAS  Google Scholar 

  • Mi H, Endo T, Ogawa T, Asada K (1995) Thylakoid membrane-bound, NADPH-specific pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 36:661–668

    CAS  Google Scholar 

  • Mihm MJ, Wattanapitayakul SK, Piao SF, Hoyt DG, Bauer JA (2003) Effects of angiotensin II on vascular endothelial cells: formation of receptor-mediated reactive nitrogen species. Biochem Pharmacol 65:1189–1197

    Article  CAS  Google Scholar 

  • Mishra AK, Shukla E, Singh SS (2013) Phylogenetic comparison among the heterocystous cyanobacteria based on a polyphasic approach. Protoplasma 250:77–94

    Article  Google Scholar 

  • Mishra Y, Bhargava P, Thapar R, Srivastava AK, Rai LC (2008) A comparative study of antioxidative defense system in the copper and temperature acclimated strains of Anabaena doliolum. World J Microbiol Biotechnol 24:2997–3004

    Article  CAS  Google Scholar 

  • Mukhopadhyay P, Zheng M, Bedzyk LA, LaRossa RA, Storz G (2004) Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci USA 101:745–750

    Article  CAS  Google Scholar 

  • Murphy ME, Noack E (1994) Nitric oxide assay using hemoglobin method. Meth Enzymol 233:241–250

    Google Scholar 

  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Orlowski M, Meister A (1971) Partial reactions catalyzed by γ-glutamylcysteine synthetase and evidence for an activated glutamate intermediate. J Biol Chem 246:7095–7105

    CAS  Google Scholar 

  • Oser BL (1979) Hawks Physiological chemistry. Mc Graw Hill, New York, pp. 702–705

    Google Scholar 

  • Paerl HW, Fulton RS, Moisander PH (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World 1:76–113

    Article  CAS  Google Scholar 

  • Pennincky MJ, Elskens MT (1993) Metabolism and functions of glutathione in microorganisms. Adv Microb Physiol 34:239–301

    Article  Google Scholar 

  • Poole RK (2005) Nitric oxide and nitrosative stress tolerance in bacteria. Biochem Soc Transac 33:176–180

    Article  CAS  Google Scholar 

  • Poole RK, Hughes MN (2000) New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36:775–783

    Article  CAS  Google Scholar 

  • Prats E, Mur LAJ, Sanderson R, Carver TLW (2005) Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp. Hordei. Mol Plant Pathol 6:65–78

    Article  CAS  Google Scholar 

  • Price A, Lucas PW, Lea PJ (1990) Age dependent damage and glutathione metabolism in ozone fumigated barley: a leaf section approach. J Exptl Bot 41:1309–1317

    Article  CAS  Google Scholar 

  • Radhida D, Mankim C, Jo B (2004) ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J Exp Botany 55:205–212

    Google Scholar 

  • Radi R (2003) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008

    Article  Google Scholar 

  • Ramirez L, Simontacchi M, Murgia I, Zabaleta E, Lamattina L (2011) Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: a well equipped team to preserve plant iron homeostasis. Plant Sci 181:582–592

    Article  CAS  Google Scholar 

  • Rennenberg H, Brunold C (1994) Significance of glutathione metabolism in plants under stress. Prog Bot 55:142–156

    CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Sagisaka S (1976) The occurrence of peroxide in perennial plant Populas gebric. Plant Physiol 57:308–309

    Article  CAS  Google Scholar 

  • Sakihama Y, Nakamura S, Yamasaki H (2002) Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 43:290–297

    Article  CAS  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplasts glutathione reductase. Plant Physiol 59:1011–1012

    Article  CAS  Google Scholar 

  • Schreiber F, Beutler M, Enning D, Lamprecht-Grandio M, Zafra O, González-Pastor JE, Beer DD (2011) The role of nitric-oxide-synthase-derived nitric oxide in multicellular traits of Bacillus subtilis 3610: biofilm formation, swarming, and dispersal. BMC Microbiol 11:111

    Article  CAS  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein bound, and non-protein sulfhydryl groups in tissue by Ellman’s reagent. Anal Biochem 25:192–208

    Article  CAS  Google Scholar 

  • Shi SY, Wang G, Wang YD, Zhang LG, Zhang LX (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide 13:1–9

    Article  CAS  Google Scholar 

  • Singh A, Kaushik MS, Srivastava M, Tiwari DN, Mishra AK (2016) Siderophore mediated attenuation of cadmium toxicity by paddy field cyanobacterium Anabaena oryzae. Algal Res 16:63–68

    Article  Google Scholar 

  • Singh P, Kaushik MS, Srivastava M, Mishra AK (2015) Phylogenetic analysis of heterocystous cyanobacteria (Subsections IV and V) using highly iterated palindromes as molecular markers. Physiol Mol Biol Plants 20:331–342

    Article  Google Scholar 

  • Singh SC, Sinha RP, Hader DP (2002) Role of lipids and fatty acids in stress tolerance in Cyanobacteria. Acta Protozool 41:297–308

    CAS  Google Scholar 

  • Spiro S (2007) Regulators of bacterial responses to nitric oxide. FEMS Microbiol Rev 31:193–211

    Article  CAS  Google Scholar 

  • Straus NA (1994) Iron deprivation: physiology and gene regulation. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, The Netherlands, pp. 731–750

    Chapter  Google Scholar 

  • Sun B, Jing Y, Chen K, Song L, Chen F, Zhang L (2007) Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). J Plant Physiol 164:536–543

    Article  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  CAS  Google Scholar 

  • Vardar C, Basaran E, Cansaran-Duman D, Aras S (2014) Air-quality biomonitoring: assessment of genotoxicity of air pollution in the Province of Kayseri (Central Anatolia) by use of the lichen Pseudevernia fur furacea (L.) Zopf and amplified fragment length polymorphism markers. Mutat Res: Genet Toxicol Environ 759:43–50

    Article  CAS  Google Scholar 

  • Vardi A, Formiggini F, Casotti R, De Martino R, Ribalet F, Miralto A, Bowler C (2006) A stress surveillance system based on calcium and nitric oxide in marine diatoms. P Biol 4:411–419

    CAS  Google Scholar 

  • Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun 26:55–57

    Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449–455

    Article  CAS  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183

    Article  CAS  Google Scholar 

  • Xue L, Li S, Sheng H, Feng H, Xu S, An L (2007) nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in Cyanobacterium. Curr Microbiol 55:294–301

    Article  CAS  Google Scholar 

  • Yoshioka H, Mase K, Yoshioka M, Kobayashi M, Asai S (2011) Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity. Nitric Oxide 25:216–221

    Article  CAS  Google Scholar 

  • Zhang XW, Dong YJ, Qui XK, Hu GQ, Wang YH, Wang QH (2012) Exogenous nitric oxide alleviated iron-deficiency chlorosis in peanut growing on calcareous soil. Plant soil Environ 58:11–120

    Article  Google Scholar 

  • Zhao M-G, Chen L, Zhang L-L, Zhang W-H (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151(2):755–767

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Council of Scientific and Industrial Research, New Delhi for providing financial support. The Head, Department of Botany, Banaras Hindu University, Varanasi, India is gratefully acknowledged for providing laboratory facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Mishra.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Table S1

(DOCX 16 kb)

Figure S1.

Time dependent exponential decay and production of GSNO and NO under iron deficiency in Anabaena 7120. (GIF 42 kb)

High resolution image (TIFF 645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, M.S., Srivastava, M., Srivastava, A. et al. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120. Environ Sci Pollut Res 23, 21805–21821 (2016). https://doi.org/10.1007/s11356-016-7421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7421-7

Keywords

Navigation