Skip to main content
Log in

Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sorption of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) on a range of dealuminated zeolites were investigated to understand the mechanism of their sorption on microporous minerals, while the influence of common metal cations, solution pH, and humic acid was also studied. Sorption of chlorophenols was found to increase with the hydrophobicity of the sorbates and that of the microporous minerals, indicating the important role of hydrophobic interactions, while sorption was also stronger in the micropores of narrower sizes because of greater enhancement of the dispersion interactions. The presence of metal cations could enhance chlorophenol sorption due to the additional electrostatic attraction between metal cations exchanged into the mineral micropores and the chlorophenolates, and this effect was apparent on the mineral sorbent with a high density of surface cations (2.62 sites/nm2) in its micropores. Under circum-neutral or acidic conditions, neutral chlorophenol molecules adsorbed into the hydrophobic micropores through displacing the “loosely bound” water molecules, while their sorption was negligible under moderately alkaline conditions due to electrostatic repulsion between the negatively charged zeolite framework and anionic chlorophenolates. The influence of humic acid on sorption of chlorophenols on dealuminated Y zeolites suggests that its molecules did not block the micropores but created a secondary sorption sites by forming a “coating layer” on the external surface of the zeolites. These mechanistic insights could help better understand the interactions of ionizable chlorophenols and metal cations in mineral micropores and guide the selection and design of reusable microporous mineral sorbents for sorptive removal of chlorophenols from aqueous stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, Ibrahim MNM (2011) The use of date palm as a potential adsorbent for wastewater treatment: a review. Environ Sci Pollut Res 19(5):1464–1484

    Article  Google Scholar 

  • Aksu Z, Yener J (2001) A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manag 21(8):695–702

    Article  CAS  Google Scholar 

  • Anbia M, Ghaffari A (2009) Adsorption of phenolic compounds from aqueous solutions using carbon nanoporous adsorbent coated with polymer. Appl Surf Sci 255(23):9487–9492

    Article  CAS  Google Scholar 

  • Anbia M, Lashgari M (2009) Synthesis of amino-modified ordered mesoporous silica as a new nano sorbent for the removal of chlorophenols from aqueous media. Chem Eng J 150(2–3):555–560

    Article  CAS  Google Scholar 

  • Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O (2000) Adsorption of phenol by bentonite. Environ Pollut 107(3):391–398

    Article  CAS  Google Scholar 

  • Beyer H (2002) Dealumination techniques for zeolites. In: Post-synthesis modification I. Springer, Berlin, pp. 203–255

    Chapter  Google Scholar 

  • Breck DW (1974) Zeolite molecular sieves, structure, chemistry and use. John Wiley, New York

    Google Scholar 

  • Chang Q, Jiang G, Tang H, Li N, Huang J, Wu L (2015) Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite. Chin J Catal 36(7):961–968

    Article  CAS  Google Scholar 

  • Chen NY (1976) Hydrophobic properties of zeolites. J Phys Chem 80(1):60–64

    Article  CAS  Google Scholar 

  • Chen G, Wang Y, Pei Z (2013) Adsorption and desorption of 2,4,6-trichlorophenol onto and from ash as affected by Ag+, Zn2+, and Al3+. Environ Sci Pollut Res 21(3):2002–2008

    Article  Google Scholar 

  • Cheng H, Reinhard M (2006a) Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals. Environ Sci Technol 40(24):7694–7701

    Article  CAS  Google Scholar 

  • Cheng H, Reinhard M (2006b) Measuring hydrophobic micropore volumes in geosorbents from trichloroethylene desorption data. Environ Sci Technol 40(11):3595–3602

    Article  CAS  Google Scholar 

  • Cheng H, Reinhard M (2007) Sorption and inhibited dehydrohalogenation of 2,2-dichloropropane in micropores of dealuminated Y zeolites. Environ Sci Technol 41(6):1934–1941

    Article  CAS  Google Scholar 

  • Cheng H, Reinhard M (2010) In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores. J Hazard Mater 179(1–3):596–603

    Article  CAS  Google Scholar 

  • Cheng H, Hu E, Hu Y (2012) Impact of mineral micropores on transport and fate of organic contaminants: a review. J Contam Hydrol 129-130:80–90

    Article  CAS  Google Scholar 

  • Dąbrowski A, Podkoscielny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere 58(8):1049–1070

    Article  Google Scholar 

  • Damjanovic L, Rakic V, Rac V, Stosic D, Auroux A (2010) The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents. J Hazard Mater 184(1–3):477–484

    Article  CAS  Google Scholar 

  • Ding L, Snoeyink VL, Marinas BJ, Yue Z, Economy J (2008) Effects of powdered activated carbon pore size distribution on the competitive adsorption of aqueous atrazine and natural organic matter. Environ Sci Technol 42(4):1227–1231

    Article  CAS  Google Scholar 

  • Elci L, Kolbe N, Elci SG, Anderson JT (2011) Solid phase extractive preconcentration coupled to gas chromatography–atomic emission detection for the determination of chlorophenols in water samples. Talanta 85(1):551–555

    Article  CAS  Google Scholar 

  • Farrell J, Reinhard M (1994) Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions. 2. Kinetics. Environ Sci Technol 28(1):63–72

    Article  CAS  Google Scholar 

  • Farrell J, Manspeaker C, Luo J (2003) Understanding competitive adsorption of water and trichloroethylene in a high-silica Y zeolite. Microporous Mesoporous Mater 59(2–3):205–214

    Article  CAS  Google Scholar 

  • Ferro-Garcia MA, Rivera-Utrilla J, Bautista-Toledo I, Moreno-Castilla C (1996) Chemical and thermal regeneration of an activated carbon saturated with chlorophenols. J Chem Technol Biotechnol 67(2):183–189

    Article  CAS  Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  • Hamdaoui O, Naffrechoux E (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater 147(1–2):381–394

    Article  CAS  Google Scholar 

  • He Y, Cheng H (2016) Degradation of N-nitrosodimethylamine (NDMA) and its precursor dimethylamine (DMA) in mineral micropores induced by microwave irradiation. Water Res 94:305–314

    Article  CAS  Google Scholar 

  • Holopainen S, Luukkonen V, Nousiainen M, Sillanpaa M (2013) Determination of chlorophenols in water by headspace solid phase microextraction ion mobility spectrometry (HS-SPME-IMS). Talanta 114:176–182

    Article  CAS  Google Scholar 

  • Hu E, Cheng H (2013) Impact of surface chemistry on microwave-induced degradation of atrazine in mineral micropores. Environ Sci Technol 47(1):533–541

    Article  CAS  Google Scholar 

  • Hu E, Cheng H, Hu Y (2012) Microwave-induced degradation of atrazine sorbed in mineral micropores. Environ Sci Technol 46(9):5067–5076

    Article  CAS  Google Scholar 

  • Igbinosa EO, Odjadjare EE, Chigor VN, Igbinosa IH, Emoghene AO, Ekhaise FO, Igiehon NO, Idemudia OG (2013) Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective. Sci World J 2013:460215

    Google Scholar 

  • Juang R, Wu F, Tseng R (1996) Adsorption isotherms of phenolic compounds from aqueous solutions onto activated carbon fibers. J Chem Eng Data 41(3):487–492

    Article  CAS  Google Scholar 

  • Kadirvelu K, Faur-Brasquet C, Cloirec PL (2000) Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths. Langmuir 16(22):8404–8409

    Article  CAS  Google Scholar 

  • Kadmi, Y., L. Favier, T. Yehya, I. Soutrel, A. I. Simion, C. Vial and D. Wolbert (2015) Controlling contamination for determination of ultra-trace levels of priority pollutants chlorophenols in environmental water matrices. Arab J Chem

  • Karapınar N (2009) Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions. J Hazard Mater 170(2–3):1186–1191

    Article  Google Scholar 

  • Kawaguchi M, Ishii Y, Sakui N, Okanouchi N, Ito R, Saito K, Nakazawa H (2005) Stir bar sorptive extraction with in situ derivatization and thermal desorption–gas chromatography–mass spectrometry for determination of chlorophenols in water and body fluid samples. Anal Chim Acta 533(1):57–65

    Article  CAS  Google Scholar 

  • Kawahigashi M, Sumida H, Yamamoto K (2005) Size and shape of soil humic acids estimated by viscosity and molecular weight. J Colloid Interface Sci 284(2):463–469

    Article  CAS  Google Scholar 

  • Kerr GT (1967) Intracrystalline rearrangement of constitutive water in hydrogen zeolite Y. J Phys Chem 71(12):4155–4156

    Article  CAS  Google Scholar 

  • Li J, Werth CJ (2004) Slow desorption mechanisms of volatile organic chemical mixtures in soil and sediment micropores. Environ Sci Technol 38(2):440–448

    Article  Google Scholar 

  • Limam I, Guenne A, Driss MR, Mazeas L (2010) Simultaneous determination of phenol, methylphenols, chlorophenols and bisphenol-a by headspace solid-phase microextraction-gas chromatography-mass spectrometry in water samples and industrial effluents. Int J Environ Anal Chem 90(3–6):230–244

    Article  CAS  Google Scholar 

  • Liu Q, Zheng T, Wang P, Jiang J, Li N (2010) Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem Eng J 157(2–3):348–356

    Article  CAS  Google Scholar 

  • Lua AC, Jia Q (2009) Adsorption of phenol by oil–palm-shell activated carbons in a fixed bed. Chem Eng J 150(2–3):455–461

    Article  CAS  Google Scholar 

  • Misaelides P (2011) Application of natural zeolites in environmental remediation: a short review. Microporous Mesoporous Mater 144(1–3):15–18

    Article  CAS  Google Scholar 

  • Mohan D, Singh KP (2002) Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res 36(9):2304–2318

    Article  CAS  Google Scholar 

  • Moreno-Castilla C (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42(1):83–94

    Article  CAS  Google Scholar 

  • Muller EA, Gubbins KE (1998) Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces. Carbon 36(10):1433–1438

    Article  CAS  Google Scholar 

  • Muller EA, Hung FR, Gubbins KE (2000) Adsorption of water vapor-methane mixtures on activated carbons. Langmuir 16(12):5418–5424

    Article  Google Scholar 

  • Nath K, Bhakhar MS (2010) Microbial regeneration of spent activated carbon dispersed with organic contaminants: mechanism, efficiency, and kinetic models. Environ Sci Pollut Res 18(4):534–546

    Article  Google Scholar 

  • Nghiem LD (2010) Influence of feed water chemistry on the removal of ionisable and neutral trace organics by a loose nanofiltration membrane. Membr Water Treat 1(2):93–101

    Article  Google Scholar 

  • Nghiem LD, Vogel D, Khan S (2008) Characterising humic acid fouling of nanofiltration membranes using bisphenol a as a molecular indicator. Water Res 42(15):4049–4058

    Article  CAS  Google Scholar 

  • Nguyen C, Do DD (1999) Adsorption of supercritical gases in porous media: determination of micropore size distribution. J Phys Chem B 103(33):6900–6908

    Article  CAS  Google Scholar 

  • Ortiz-Martínez K, Reddy P, Cabrera-Lafaurie WA, Roman FR, Hernández-Maldonado AJ (2016) Single and multi-component adsorptive removal of bisphenol a and 2,4-dichlorophenol from aqueous solutions with transition metal modified inorganic–organic pillared clay composites: effect of pH and presence of humic acid. J Hazard Mater 312:262–271

    Article  Google Scholar 

  • Ozaydin S, Kocer G, Hepbasli A (2006) Natural zeolites in energy applications. Energy Sources A Recover Util Environ Eff 28(15):1425–1431

    Article  CAS  Google Scholar 

  • Peng J, Liu J, Hu X, Jiang G (2007) Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. J Chromatogr A 1139(2):165–170

    Article  CAS  Google Scholar 

  • Pera-Titus M, Garcıia-Molina V, Banos MA, Gimenez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47(4):219–256

    Article  CAS  Google Scholar 

  • Quintana JB, Rodil R, Muniategui-Lorenzo S, Lopez-Mahia P, Prada-Rodríguez D (2007) Multiresidue analysis of acidic and polar organic contaminants in water samples by stir-bar sorptive extraction-liquid desorption-gas chromatography-mass spectrometry. J Chromatogr A 1174(1–2):27–39

    Article  CAS  Google Scholar 

  • Quintelas C, Costa F, Tavares T (2012) Bioremoval of diethylketone by the synergistic combination of microorganisms and clays: uptake, removal and kinetic studies. Environ Sci Pollut Res 20(3):1374–1383

    Article  Google Scholar 

  • Radhika M, Palanivelu K (2006) Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent—kinetics and isotherm analysis. J Hazard Mater 138(1):116–124

    Article  CAS  Google Scholar 

  • Regueiro J, Becerril E, Garcia-Jares C, Llompart M (2009) Trace analysis of parabens, triclosan and related chlorophenols in water by headspace solid-phase microextraction with in situ derivatization and gas chromatography–tandem mass spectrometry. J Chromatogr A 1216(23):4693–4702

    Article  CAS  Google Scholar 

  • Rehakova M, Cuvanova S, Dzivak M, Rimar J, Gaval’ova Z (2004) Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr Opinion Solid State Mater Sci 8(6):397–404

    Article  CAS  Google Scholar 

  • Ruthven DM (1984) Principles of adsorption and adsorption processes. John Wiley, New York

    Google Scholar 

  • Shah B, Tailor R, Shah A (2011) Zeolitic bagasse fly ash as a low-cost sorbent for the sequestration of p-nitrophenol: equilibrium, kinetics, and column studies. Environ Sci Pollut Res 19(4):1171–1186

    Article  Google Scholar 

  • Shevade S, Ford RG (2004) Use of synthetic zeolites for arsenate removal from pollutant water. Water Res 38(14–15):3197–3204

    Article  CAS  Google Scholar 

  • Singh KP, Gupta S, Ojha P, Rai P (2012) Predicting adsorptive removal of chlorophenol from aqueous solution using artificial intelligence based modeling approaches. Environ Sci Pollut Res 20(4):2271–2287

    Article  Google Scholar 

  • Sljivic M, Smiciklas I, Pejanovic S, Plecaa I (2009) Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Appl Clay Sci 43(1):33–40

    Article  CAS  Google Scholar 

  • Wall NA, Choppin GR (2003) Humic acids coagulation: influence of divalent cations. Appl Geochem 18(10):1573–1582

    Article  CAS  Google Scholar 

  • Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156(1):11–24

    Article  CAS  Google Scholar 

  • Wang J, Feng H, Yu H (2007) Analysis of adsorption characteristics of 2,4-dichlorophenol from aqueous solutions by activated carbon fiber. J Hazard Mater 144(1–2):200–207

    Article  CAS  Google Scholar 

  • Werth CJ, Reinhard M (1997) Effects of temperature on trichloroethylene desorption from silica gel and natural sediments. 2. Kinetics. Environ Sci Technol 31(3):697–703

    Article  CAS  Google Scholar 

  • Witter E, Kirchmann H (1989) Peat, zeolite, and basalt as adsorbent of ammonical nitrogen during manure decomposition. Plant Soil 115:43–52

    Article  CAS  Google Scholar 

  • Yang B, Liu Y, Li Z, Lei L, Zhou J, Zhang X (2015) Preferential adsorption of pentachlorophenol from chlorophenols-containing wastewater using N-doped ordered mesoporous carbon. Environ Sci Pollut Res 23(2):1482–1491

    Article  Google Scholar 

  • Yousef RI, El-Eswed B, Al-Muhtaseb AH (2011) Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies. Chem Eng J 171(3):1143–1149

    Article  CAS  Google Scholar 

  • Zhou L, Meng X, Fu J, Yang Y, Yang P, Mi C (2014) Highly efficient adsorption of chlorophenols onto chemically modified chitosan. Appl Surf Sci 292:735–741

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The constructive comments of the anonymous reviewers on an earlier version of this manuscript are greatly appreciated. This work was supported in parts by the Natural Science Foundation of China (grant nos. 41472324 and 41322024), the National Water Pollution Control and Treatment Science and Technology Project (2015ZX07406005-001), and the National Program for Support of Top-notch Young Professionals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hefa Cheng.

Additional information

Responsible editor: Philippe Garrigues

Submitted to: Environmental Science and Pollution Research

Electronic supplementary material

ESM 1

(DOCX 1360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Hu, Y. & Cheng, H. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid. Environ Sci Pollut Res 23, 19266–19280 (2016). https://doi.org/10.1007/s11356-016-7128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7128-9

Keywords

Navigation