Skip to main content
Log in

Metal bioleaching from anaerobic sediments from Reconquista River basin (Argentina) as a potential remediation strategy

  • 4th International Symposium on Environmental Biotechnology and Engineering-2014
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Anaerobic sediments of urban watercourses are subjected to industrial pollution and frequently tend to accumulate heavy metals. The biocatalyzed oxidation and reduction of sulphur compounds that occur within the sediment are key reactions that determine mobility of metals such as that occurred in mine acidic drainage reactions. The aim of this work was to study the application of these processes using heap leaching technology for the remediation of anaerobic contaminated sediments from Reconquista River basin. The bioleaching potentiality for remediation was demonstrated through batch tests in shake flasks with different pulp densities of anaerobic sediment containing 338 mg kg−1 of Zn and 117 mg kg−1 of Cu. Subsequently, bioleaching heap systems were compiled into columns of 12-cm height and 6-cm diameter, fitted with perlite to improve drainage. In order to assess the effect of elementary sulphur over the mobility of metals from the bioheap to the aqueous solution, increasing concentrations of elementary sulphur (1, 2, 5 % w/w) were added. After 3 months of acidification generated by periodic watering, the extraction of 70 % of the initial Zn and 43 % of the initial Cu was achieved. Polluted sediments from waterways as Reconquista River should not be indiscriminately manipulated if acid drainage is possible. Remediation by a simple and economically viable strategy like heap leaching is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akcil A et al (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86(1):24–36

    Article  CAS  Google Scholar 

  • Akinci G, Guven DE (2011) Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination 268:221–226

    Article  CAS  Google Scholar 

  • Atkinson CA, Jolley DF, Simpson SL (2007) Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69:1428–1437

    Article  CAS  Google Scholar 

  • Caille N, Tiffreau C, Leyval C, Morel JL (2003) Solubility of metals in an anoxic sediment during prolonged aeration. Sci Total Environ 301:239–250

    Article  CAS  Google Scholar 

  • Calmano W, Hong J, Förstner U (1993) Binding and mobilisation of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235

    CAS  Google Scholar 

  • Canadian Council of Ministers of Environment (2007) Environmental quality guidelines. Sediment quality index. Esdat Environmental Database Management Software.www.esdat.net. Accessed 25 Oct 2015

  • Cappuyns V, Swennen R (2011) Oxidation of anoxic soils and sediments: how can we evaluate the risk of heavy metal release? In: Ramsey G, McHugh S (eds.) River sediments pp 77–101

  • Cappuyns V, Swennen R, Deviver A (2006) Dredged river sediments: potential chemical time bombs? A case study. Water Air Soil Pollut 171:49–66

    Article  CAS  Google Scholar 

  • Castañé PM, Rovedatti MG, Topalián ML, Salibián A (2006) Spatial and temporal trends of physicochemical parameters in the water of the Reconquista River (Buenos Aires, Argentina). Environ Monit Assess 117:135–144

    Article  Google Scholar 

  • Charriau A et al (2011) Trace metal behavior in riverine sediments: role of organic matter and sulfides. Appl Goechem 26:80–90

    Article  CAS  Google Scholar 

  • Curutchet G, Gutierrez R, Grinberg S (2012) Degradación ambiental y periferia urbana: un estudio transdiciplinario sobre la contaminación en la región metropolitana de Buenos Aires. Ambiente & Sociedade 15:173–194 (in Spanish)

    Article  Google Scholar 

  • Defensoría del Pueblo de la Nación (2007) Informe especial de la cuenca del Río Reconquista: Primera parte. FOCO Web. http://www.foco.org.ar/documentos/informe_reconquista.pdf. Accessed 25 Mar 2014 (in Spanish)

  • Di Nanno MP, Curutchet G, Ratto S (2007) Anaerobic sediment potential acidification and metal release risk assessment by chemical characterization and batch resuspension experiments. J Soils Sediments 7:187–194

    Article  Google Scholar 

  • Di Nanno MP, Curutchet G, Ratto S (2009) S, Zn, Cr, Cu and Fe changes during fluvial sediments oxidation. Ciencias deI Suelo (Argentina) 27:199–207 (in Spanish)

    Google Scholar 

  • Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:972–985

    Google Scholar 

  • Eggleton J, Thomas K (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980

    Article  CAS  Google Scholar 

  • Fang D et al (2009) Effect of sulphur concentration on bioleaching of heavy metals from contaminated dredged sediments. Environ Technol 30:1241–1248

    Article  CAS  Google Scholar 

  • Fang D et al (2011) A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment. J Hazard Mater 192:226–233

    CAS  Google Scholar 

  • Förstner U (2004) Traceability of sediment analysis. Trends Anal Chem 23:217–236

    Article  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  Google Scholar 

  • Gelman F, Binstock R, Halicz L (2012) Application of the Walkley–Black titration for the organic carbon quantification in organic rich sedimentary rocks. Fuel 96:608–610

    Article  CAS  Google Scholar 

  • Johnson DB (2006) Biohydrometallurgy and the environment: intimate and important interplay. Hydrometallurgy 83:153–166

    Article  CAS  Google Scholar 

  • Kersten M, Förstner U (1991) Geochemical characterization of the potential trace metal mobility in cohesive sediments. Geo-Mar Lett 11:184–187

    Article  Google Scholar 

  • Lors C, Triffreau C, Laboudigue A (2004) Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments. Chemosphere 56:619–630

    Article  CAS  Google Scholar 

  • Löser C, Zehnsdorf A, Görsch K, Seidel H (2006) Remediation of heavy metal polluted sediment in the solid bed: comparison of abiotic and microbial leaching. Chemosphere 65:9–16

    Article  Google Scholar 

  • Löser C, Zehnsdorf A, Hoffmann P, Seidel H (2007) Remediation of heavy metal polluted sediment by suspension and solid-bed leaching: estimate of metal removal efficiency. Chemosphere 66:1699–1705

    Article  Google Scholar 

  • Maddock J, Carvalho M, Santelli R, Machado W (2007) Contaminant metal behavior during re-suspension of sulphidic estuarine sediments. Water Air Soil Pollut 181:193–200

    Article  CAS  Google Scholar 

  • Materials Data, Inc. (2004) JADE version 7 software—XRD processing identification and quantification

  • Mellota MA (2015) Caracterización y estudio de procesos microbiológicos asociados a sedimentos del río Reconquista y afluentes. Dissertation, Universidad Nacional de San Martín, Argentina

  • Morse JW, Millero FJ, Cornwell JC, Richard D (1987) The chemistry of hydrogen sulphide and iron sulphide systems in natural waters. Earth Sci Rev 24:1–42

    Article  CAS  Google Scholar 

  • Peng J et al (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640

    Article  CAS  Google Scholar 

  • Porzionato N, Mellota M, Candal R, Curutchet G (2013) Acid drainage and metal bioleaching by redox potential changes in heavy polluted fluvial sediments. Adv Mater Res 825:496–499

    Article  Google Scholar 

  • Porzionato N, Candal R, Curutchet G (2014) Biocatalyzed acidification and metal leaching processes in sediments of polluted urban streams. Int J Environ Health 7:3–14

    Article  CAS  Google Scholar 

  • Porzionato N, Mantiñan M, Bussi E, Grinberg S, Gutierrez R, Curutchet G (2015) Accumulation of pollutants, self-purification and impact of peripheral urban areas: a case study in shantytowns in Argentina. Int J Environ Ecol Geophys Eng 9:296–300

    Google Scholar 

  • Quintana M, Curutchet G, Donati E (2001) Factors affecting the chromium(VI) reduction by microbial action. Biochem Eng J 9(1):11–15

  • Reisman DJ et al (2007) Statistical validation of sulfate quantification methods used for analysis of acid mine drainage. Talanta 71(1):303–311

    Article  CAS  Google Scholar 

  • Rohweder T, Sand W (2007) Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides pp 53–58

  • Seidel H, Löser C, Zehnsdorf A, Hoffmann P, Schmerold R (2004) Bioremediation process for sediments contaminated by heavy metals: feasibility study on a pilot scale. Environ Sci Technol 38:1582–1588

    Article  CAS  Google Scholar 

  • Seidel H, Wennrich R, Hoffmann P, Löser C (2006a) Effect of different types of elemental sulphur on bioleaching of heavy metals from contaminated sediments. Chemosphere 62:1444–1453

    Article  CAS  Google Scholar 

  • Seidel H, Görsch K, Schümichen A (2006b) Effect of oxygen limitation on solid-bed bioleaching of heavy metals from contaminated sediments. Chemosphere 65:102–109

    Article  CAS  Google Scholar 

  • Silverman MP, Lundgrem DG (1959) Studies in the chemo-autotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium harvesting procedures for securing high cell yields. J Bacteriol 77:642–651

    CAS  Google Scholar 

  • Tabatabai MA (1982) Sulphur. In: Page AL, Tabatabai MA (eds) Methods of soil analysis, part 2. American Society of Agronomy Inc., Madison, pp 501–534

    Google Scholar 

  • Teuchies J, Bervoets L, Cox T, Meire P, De Deckere E (2011) The effect of waste water treatment on river metal concentrations: removal or enrichment? J Soils Sediments 11:364–372

    Article  CAS  Google Scholar 

  • Ure AM, Quevauviller P, Montau H, Griepkin B (1993) Speciation of heavy metals in soil and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int J Environ Anal Chem 51:135–151

    Article  CAS  Google Scholar 

  • Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 97:7529–7541

    Article  CAS  Google Scholar 

  • Viera M, Curutchet G, Donati E (2003) A combined bacterial process for the reduction and inmobilization of chromium. Int Biodeterior Biodegrad 52:31–34

    Article  CAS  Google Scholar 

  • Watling HR (2014) Bioleaching of a low grade copper ore, linking leach chemistry and microbiology. Miner Eng 56:35.44

    Article  Google Scholar 

  • Yagnentkovsky N, Viera M, Donati E (2009) Recovery of nickel and zinc using biogenerated sulphuric acid. Adv Mater Res 71–71:649–652

    Article  Google Scholar 

  • Ye S, Laws EA, Gambrell R (2013) Trace element remobilization following the resuspension of sediments under controlled redox conditions: City Park Lake, Baton Rouge; LA. Appl Geochem 28:91–99

    Article  CAS  Google Scholar 

  • Zehnsdorf A, Seidel H, Hoffmann P, Schlenker U, Müller RA (2013) Conditioning of sediment polluted with heavy metals using plants as a preliminary stage of the bioremediation process: a large-scale study. J Soils Sediments 13:1106–1112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Consejo Nacional de Investigaciones Científicas y Técnicas and Fundación YPF (PIO13320130100203CO) and Universidad Nacional de San Martín (Diálogo entre las Ciencias) for the financial support. NP and AT acknowledge fellowship from CONICET. RC and GC are researchers of CONICET. They are also thankful to N. Morandeira for her contribution in the analyses of satellite data and edition of the image.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Curutchet.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porzionato, N., Tufo, A., Candal, R. et al. Metal bioleaching from anaerobic sediments from Reconquista River basin (Argentina) as a potential remediation strategy. Environ Sci Pollut Res 24, 25561–25570 (2017). https://doi.org/10.1007/s11356-016-6717-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6717-y

Keywords

Navigation