Skip to main content

Advertisement

Log in

Reproductive and developmental toxicity of the herbicide Betanal® Expert and corresponding active ingredients to Daphnia spp.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The commercial herbicide formulation Betanal® Expert and its active ingredients (a.i.s) ethofumesate, phenmedipham and desmedipham were focused in this study. Following questions yielding from a previous study, an in-depth analysis of the reproductive toxicity of the pesticide was made. Long-term exposures of Daphnia magna and Daphnia longispina to Betanal® Expert, to each a.i. and to a customised mixture matching the a.i.s ratio within the commercial formulation were carried out, and deleterious effects in the offspring were recorded. This intended to clarify whether (1) the tested compounds induce reproductive injury; (2) there is interspecific variation in daphnids tolerance to the compounds; (3) there is an interaction between chemicals in combined treatments; and (4) the so-called inert ingredients added to the commercial formulation contribute to the toxicity of the herbicide. Generally, developmental impair was observed in both species (egg abortion and release of undeveloped embryos or dead offspring) at concentrations of any of the a.i.s below 1 mg L−1. Ethofumesate was invariably the least toxic pesticide, and D. magna tended to be of slightly higher sensitivity to the exposures compared to D. longispina. Joint exposures indicated that the a.i.s can interact, inducing more than and less than additive effects for Betanal® Expert and the customised a.i. mixture, respectively. This indicates that inert ingredients co-formulating the commercial pesticide (which are absent from the customised a.i. mixture) actually contribute to its overall toxicity. This study constitutes an add-on to the discussion on the ecotoxicological framework required for authorisation of pesticide trade and usage. The results support the need to consider test species, long-term hazardous potential and toxicity of commercial formulations rather than solely that of active ingredients, as relevant variables in pesticide regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrantes N, Pereira R, De Figueiredo D, Marques C, Pereira M, Goncalves F (2009) A whole sample toxicity assessment to evaluate the sub‐lethal toxicity of water and sediment elutriates from a lake exposed to diffuse pollution. Environ Toxicol 24:259–270

    Article  CAS  Google Scholar 

  • Alda Álvarez O, Jager T, Redondo EM, Kammenga JE (2006) Physiological modes of action of toxic chemicals in the nematode Acrobeloides nanus. Environ Toxicol Chem 25(12):3230–3237

    Article  Google Scholar 

  • Antunes SC, Castro BB, Goncalves F (2004) Effect of food level on the acute and chronic responses of daphnids to lindane. Environ Pollut 127:367–375

    Article  CAS  Google Scholar 

  • ASTM (1980) Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  • Baird DJ, Soares AMVM, Girling A, Barber I, Bradley MC, Calow P (1989) The long-term maintenance of Daphnia magna Straus for use in ecotoxicity test: problems and prospects. In: Lokke H, Tyle H, Bro-Rasmussen F (eds) Proceedings First European Conference on Ecotoxicology, Lyngby, Denmark., pp 144–148

    Google Scholar 

  • Baird DJ, Barber I, Soares AMVM, Calow P (1991) An early life-stage test with Daphnia magna straus: an alternative to the 21-day chronic test? Ecotoxicol Environ Saf 22:1–7

    Article  CAS  Google Scholar 

  • Barata C, Baird DJ (2000) Determining the ecotoxicological mode of action of chemicals from measurements made on individuals: results from instar-based tests with Daphnia magna Straus. Aquatic Toxicol 48:195–209

    Article  CAS  Google Scholar 

  • Bayer (2009) Bayer CropScience AG. Corporate Comunications. http://bayercropscience.co.uk/assets/Uploads/BetanalExpertlabel.pdf. Assessed May 2012

  • Beyerle‐Pfnür R, Burkhardt G, Peither A, Lay JP (1991) Chronic ecotoxicity of 3, 4 dichloroaniline to freshwater ecosystems. Toxicol Environ Chem 31:367–373

    Article  Google Scholar 

  • Carabias-Martinez R, Garcia-Hermida C, Rodriguez-Gonzalo E, Soriano-Bravo F, Hernandez-Mendez J (2003) Determination of herbicides, including thermally labile phenylureas, by solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr A 1002:1–12

    Article  CAS  Google Scholar 

  • Carlsen S, Spliid NH, Svensmark B (2006) Drift of 10 herbicides after tractor spray application. 2. Primary drift (droplet drift). Chemosphere 64:778–786

    Article  CAS  Google Scholar 

  • Cedergreen N, Streibig JC (2005) The toxicity of herbicides to non‐target aquatic plants and algae: assessment of predictive factors and hazard. Pest Manag Sci 61:1152–1160

    Article  CAS  Google Scholar 

  • Cedergreen N, Christensen AM, Kamper A, Kudsk P, Mathiassen SK, Streibig JC, Sørensen H (2008) A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites. Environ Toxicol Chem 27:1621–1632

    Article  CAS  Google Scholar 

  • Cerejeira M, Viana P, Batista S, Pereira T, Silva E, Valério M, Silva A, Ferreira M, Silva-Fernandes A (2003) Pesticides in Portuguese surface and ground waters. Water Res 37:1055–1063

    Article  CAS  Google Scholar 

  • Cox C, Surgan M (2006) Unidentified inert ingredients in pesticides: implications for human and environmental health. Environ Health Perspect 114:1803

    CAS  Google Scholar 

  • Deneer JW (2000) Toxicity of mixtures of pesticides in aquatic systems. Pest Manag Sci 56:516–520

    Article  CAS  Google Scholar 

  • EC (2002) Guidance Document on Aquatic Toxicology, In the Context of the Council Directive 91/414/EEC. Working Document. European Comission Health & Consumer Protection Directorate-General.SANCO/3268/2001.rev.4 (final), 17 October 2002., p 39

    Google Scholar 

  • Elendt B-P, Bias W-R (1990) Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of D. magna. Water Res 24:1157–1167

    Article  CAS  Google Scholar 

  • EPA (Environmental Protection Agency) (1996) Reregistration eligibility decision desmedipham. Washington, DC., p 156

    Google Scholar 

  • EPA (Environmental Protection Agency) (2005a) Reregistration eligibility decision for ethofumesate. Washington, DC., p 65

    Google Scholar 

  • EPA (Environmental Protection Agency) (2005b) Reregistration eligibility decision for phenmedipham. Washington, DC., p 88

    Google Scholar 

  • Fritz JI, Braun R (2006) Ecotoxicological effects of benzoxazinone allelochemicals and their metabolites on aquatic nontarget organisms. J Agric Food Chem 54:1105–1110

    Article  CAS  Google Scholar 

  • García de Llasera M, Bernal-González M (2001) Presence of carbamate pesticides in environmental waters from the northwest of Mexico: determination by liquid chromatography. Water Res 35:1933–1940

    Article  Google Scholar 

  • Guilhermino L, Sobral O, Chastinet C, Ribeiro R, Gonçalves F, Silva M, Soares AMVM (1999) A Daphnia magna first-brood chronic test: An alternative to the conventional 21-day chronic bioassay? Ecotoxicol Environ Saf 42:67–74

    Article  CAS  Google Scholar 

  • Guisande C, Gliwicz ZM (1992) Egg size and clutch size in two Daphnia species grown at different food levels. J Plankton Res 14:997–1007

    Article  Google Scholar 

  • Jager T, Zimmer EI (2012) Simplified dynamic energy budget model for analysing ecotoxicity data. Ecol Model 225:74–81

    Article  CAS  Google Scholar 

  • Jager T, Heugens EHW, Kooijman SALM (2006) Making sense of ecotoxicological test results: towards application of process-based models. Ecotoxicology 15:305–314

    Article  CAS  Google Scholar 

  • Jager T, Vandenbrouck T, Baas J, De Coen WM, Kooijman SALM (2010) A biology-based approach for mixture toxicity of multiple endpoints over the life cycle. Ecotoxicology 19:351–361

    Article  CAS  Google Scholar 

  • Jonker MJ, Svendsen C, Bedaux JJM, Bongers M, Kammenga JE (2005) Significance testing of synergistic/antagonistic, dose level‐dependent, or dose ratio‐dependent effects in mixture dose‐response analysis. Environ Toxicol Chem 24:2701–2713

    Article  CAS  Google Scholar 

  • Kast‐Hutcheson K, Rider CV, LeBlanc GA (2001) The fungicide propiconazole interferes with embryonic development of the crustacean Daphnia magna. Environ Toxicol Chem 20:502–509

    Article  Google Scholar 

  • Kegley S, Hill B, Orme S, Choi A (2009) PAN Pesticide Database, Pesticide Action Network, North America. San Francisco, CA. http://www.pesticideinfo.org

  • Kooijman SALM (2009) What the egg can tell about its hen: embryonic development on the basis of dynamic energy budgets. J Math Biol 58:377–394

    Article  CAS  Google Scholar 

  • Kooijman SALM, Bedaux JJM (1996) Analysis of toxicity tests on Daphnia survival and reproduction. Water Res 30:1711–1723

    Article  CAS  Google Scholar 

  • Krogh K, Halling-Sørensen B, Mogensen B, Vejrup K (2003) Environmental properties and effects of nonionic surfactant adjuvants in pesticides: a review. Chemosphere 50:871–901

    Article  CAS  Google Scholar 

  • Lampert W (2006) Daphnia: model herbivore, predator and prey. Pol J Ecol 54:607–620

    Google Scholar 

  • Lilius H, Hästbacka T, Isomaa B (1995) Short communication: a comparison of the toxicity of 30 reference chemicals to Daphnia magna and Daphnia pulex. Environ Toxicol Chem 14:2085–2088

    CAS  Google Scholar 

  • Marques CR, Abrantes N, Goncalves F (2004a) Life‐history traits of standard and autochthonous cladocerans: I. Acute and chronic effects of acetylsalicylic acid. Environ Toxicol 19:518–526

    Article  CAS  Google Scholar 

  • Marques CR, Abrantes N, Goncalves F (2004b) Life‐history traits of standard and autochthonous cladocerans: II. Acute and chronic effects of acetylsalicylic acid metabolites. Environ Toxicol 19:527–540

    Article  CAS  Google Scholar 

  • Neumann M, Liess M, Schulz R (2003) A qualitative sampling method for monitoring water quality in temporary channels or point sources and its application to pesticide contamination. Chemosphere 51:509–513

    Article  CAS  Google Scholar 

  • OECD (Organization for the Economic Cooperation and Development) (2008) Daphnia magna reproduction test–test guideline 211. Paris, France

    Google Scholar 

  • Palma P, Palma V, Fernandes R, Bohn A, Soares A, Barbosa I (2009a) Embryo-toxic effects of environmental concentrations of chlorpyrifos on the crustacean Daphnia magna. Ecotoxicol Environ Saf 72:1714–1718

    Article  CAS  Google Scholar 

  • Palma P, Palma V, Fernandes R, Soares A, Barbosa I (2009b) Endosulfan sulphate interferes with reproduction, embryonic development and sex differentiation in Daphnia magna. Ecotoxicol Environ Saf 72:344–350

    Article  CAS  Google Scholar 

  • Pereira JL, Gonçalves F (2007) Effects of food availability on the acute and chronic toxicity of the insecticide methomyl to Daphnia spp. Sci Total Environ 386:9–20

    Article  CAS  Google Scholar 

  • Pereira JL, Gonçalves F (2008) Daphnia fitness over a food gradient : is body size the single trait predicting exploitative ability? Ann Limnol–Int J Lim 44(3):169–179

    Article  Google Scholar 

  • Pereira T, Cerejeira M, Espírito‐Santo J (2000) Use of microbiotests to compare the toxicity of water samples fortified with active ingredients and formulated pesticides. Environ Toxicol 15:401–405

    Article  CAS  Google Scholar 

  • Pereira J, Marques C, Gonçalves F (2004) Allometric relations for Ceriodaphnia spp. and Daphnia spp. Annuales de Limnologie–International Journal of Limnology 40(1):11–14

    Article  Google Scholar 

  • Pereira JL, Mendes CD, Gonçalves F (2007) Short-and long-term responses of Daphnia spp. to propanil exposures in distinct food supply scenarios. Ecotoxicol Environ Saf 68:386–396

    Article  CAS  Google Scholar 

  • Pereira JL, Antunes SC, Castro BB, Marques CR, Gonçalves AMM, Gonçalves F, Pereira R (2009) Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology 18:455–463

    Article  CAS  Google Scholar 

  • Polishchuk LV, Vijverberg J (2005) Contribution analysis of body mass dynamics in Daphnia. Oecologia 144:268–277

    Article  Google Scholar 

  • PPDB (Pesticide Properties Database) (2009) Background and support information 2.0 version. Agriculture and Environmental Reseach Unit, Science and Technology Research Institute. University of Hertforshire, UK

    Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists: Cambridge Univ Press. Cambridge, UK

    Book  Google Scholar 

  • Roberts TR (1998) Metabolic pathways of agrochemicals: Royal Society of Chemistry. London, UK

    Book  Google Scholar 

  • Saraji M, Esteki N (2008) Analysis of carbamate pesticides in water samples using single-drop microextraction and gas chromatography–mass spectrometry. Anal Bioanal Chem 391:1091–1100

    Article  CAS  Google Scholar 

  • Shaner DL (2004) Herbicide safety relative to common targets in plants and mammals. Pest Manag Sci 60:17–24

    Article  CAS  Google Scholar 

  • Smolders R, Baillieul M, Blust R (2005) Relationship between the energy status of Daphnia magna and its sensitivity to environmental stress. Aquatic Toxicol 73:155–170

    Article  CAS  Google Scholar 

  • Sobral O, Chastinet C, Nogueira A, Soares AMVM, Gonçalves F, Ribeiro R (2001) In vitro development of parthenogenetic eggs: a fast ecotoxicity test with Daphnia magna? Ecotoxicol Environ Saf 50:174–179

    Article  CAS  Google Scholar 

  • Solomon K, Thompson D (2003) Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. J Toxicol Environ Health B: Critical Reviews 6:289–324

    Article  CAS  Google Scholar 

  • Stein JR (1973) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, London

    Google Scholar 

  • Tariq MI, Afzal S, Hussain I, Sultana N (2007) Pesticides exposure in Pakistan: a review. Environment Int 33:1107–1122

    Article  CAS  Google Scholar 

  • Tominack RL (2000) Herbicide formulations. Clin Toxicol 38:129–135

    CAS  Google Scholar 

  • Tomlin C (2001) The pesticide manual: British Crop Protection Council Farnham, Surrey, UK

    Google Scholar 

  • Trubetskova I, Lampert W (2002) The juvenile growth rate of Daphnia: a short-term alternative to measuring the per capita rate of increase in ecotoxicology? Arch Environ Contam Toxicol 42:193–198

    Article  CAS  Google Scholar 

  • Velkoska-Markovska L, Petanovska-Ilievska B, Vodeb L (2008) Simultaneous determination of phenmedipham, desmedipham, and ethofumesate in a pesticide formulation by normal-phase high-performance liquid chromatography. Acta Chromatogr 20:109–118

    Article  CAS  Google Scholar 

  • Vidal T, Goncalves A, Pardal M, Azeiteiro U, Goncalves F (2009) Assessing the toxicity of Betanal® on growth and sensitiveness of five freshwater planktonic species. Fresenius Environ Bull 18:585–589

    CAS  Google Scholar 

  • Vidal T, Abrantes N, Gonçalves AMM, Gonçalves F (2012) Acute and chronic toxicity of Betanal® Expert and its active ingredients on nontarget aquatic organisms from different trophic levels. Environ Toxicol 27:537–548

    Article  CAS  Google Scholar 

  • Wilson PC, Foos JF (2006) Survey of carbamate and organophosphorous pesticide export from a South Florida (USA) agricultural watershed: implications of sampling frequency on ecological risk estimation. Environ Toxicol Chem 25:2847–2852

    Article  CAS  Google Scholar 

  • Woods M, Kumar A, Correll R (2002) Acute toxicity of mixtures of chlorpyrifos, profenofos, and endosulfan to Ceriodaphnia dubia. Bull Environ Contam Toxicol 68:801–808

    Article  CAS  Google Scholar 

  • Zaffagnini F (1987) Reproduction in Daphnia. Memorie dell’Istituta Italiano di Idrobiologia 45:245–284

    Google Scholar 

Download references

Acknowledgments

The Portuguese Foundation for Science and Technology (FCT, Portugal) financed Tânia Vidal (SFRH/BPD/94562/2013), Joana Luísa Pereira (SFRH/BPD/101971/2014) by the means of individual research grants, as well as Nelson Abrantes via a FCT researcher contract (IF/01198/2014). This study was supported by the European funds through COMPETE and by national funds through FCT, under the scope of the project VITAQUA (PTDC/AAC-AMB/112438/2009). Thanks are also due to CESAM (UID/AMB/50017) for the financial support and to FCT through national funds and co-funding by FEDER, within the PT2020 Partnership Agreement. The authors are grateful to William Schmidt for the language revision of the manuscript and to an anonymous reviewer whose comments greatly contributed to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Luísa Pereira.

Additional information

Responsible editor: Henner Hollert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, T., Pereira, J.L., Abrantes, N. et al. Reproductive and developmental toxicity of the herbicide Betanal® Expert and corresponding active ingredients to Daphnia spp.. Environ Sci Pollut Res 23, 13276–13287 (2016). https://doi.org/10.1007/s11356-016-6492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6492-9

Keywords

Navigation