Skip to main content
Log in

On the bioavailability of trace metals in surface sediments: a combined geochemical and biological approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The bioavailability of metals was estimated in three river sediments (Sensée, Scarpe, and Deûle Rivers) impacted by different levels of Cu, Cd, Pb, and Zn (Northern France). For that, a combination of geochemistry and biological responses (bacteria and chironomids) was used. The results obtained illustrate the complexity of the notion of “bioavailability.” Indeed, geochemical indexes suggested a low toxicity, even in surface sediments with high concentrations of total metals and a predicted severe effect levels for the organisms. This was also suggested by the abundance of total bacteria as determined by DAPI counts, with high bacterial cell numbers even in contaminated areas. However, a fraction of metals may be bioavailable as it was shown for chironomid larvae which were able to accumulate an important quantity of metals in surface sediments within just a few days.

We concluded that (1) the best approach to estimate bioavailability in the selected sediments is a combination of geochemical and biological approaches and that (2) the sediments in the Deûle and Scarpe Rivers are highly contaminated and may impact bacterial populations but also benthic invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen HE, Fu G, Deng B (1993) Analysis of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12:1441–1454

    Article  CAS  Google Scholar 

  • Alongi DM (1992) Vertical profiles of bacterial abundance, productivity and growth rates in coastal sediments of the central Great Reef lagoon. Mar Biol 112:657–663

    Article  Google Scholar 

  • Ancion P-Y, Lear G, Dopheide A, Lewis GD (2012) Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure. Environ Poll 173:117–124

    Article  Google Scholar 

  • Ankley GT, Mattson VR, Leonard EN, West CW, Bennett JL (1993) Predicting the acute toxicity in freshwater sediments: evaluation of the role of acid volatile sulfide. Environ Toxicol Chem 12:315–320

    Article  CAS  Google Scholar 

  • Aouad G, Laboudigue A, Gineys N, Abriak NE (2012) Dredged sediments used as novel supply of raw material to produce Portland cement clinker. Cem and Concr Composites 34:788–793

    Article  CAS  Google Scholar 

  • Bervoets L, Solis D, Romero AM, Van Damme PA, Ollevier F (1997) Trace metal levels in chironomid larvae and sediments from a Bolivian river: impact of mining activities. Ecotox Environ Safety 41:275–283

    Article  Google Scholar 

  • Bervoets L, Meregalli G, De Cooman W, Goddeeris B, Blust R (2004) Caged midge larvae (Chironomus riparius) for the assessment of metal bioaccumulation from sediments in situ. Environ Toxicol Chem 23:443–454

    Article  CAS  Google Scholar 

  • Bervoets L, De Jonge M, Blust R (2016) Identification of threshold body burdens of metals for the protection of aquatic ecological status using benthic invertebrates. Environ Poll 210:76–84

    Article  CAS  Google Scholar 

  • Billon G, Ouddane B, Laureyns J, Boughriet A (2001) Chemistry of metal sulfides in anoxic sediments. Phys Chem 3:3586–3592

    CAS  Google Scholar 

  • Boughriet A, Proix N, Billon G, Recourt P, Ouddane B (2007) Environmental impact of heavy metal discharges from a smelter in Deûle-canal sediments (Northern France): concentration levels and chemical fractionation. Water Air Soil Poll 180:83–95

    Article  CAS  Google Scholar 

  • Bouskill NJ, Barker-Finkel J, Galloway TS, Handy RD, Ford TE (2009) Temporal bacterial diversity associated with metal-contaminated river sediments. Ecotoxicol DOI 10.1007/s10646-009-0414-2

  • Bradl HB (2005) Sources and origins of heavy metals (Chapter 1). In: Bradl HB (ed) Heavy metals in the environment: origin. Interaction and Remediation, Elsevier, London, p 1e27

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  Google Scholar 

  • Caeiro S, Costa MH, Ramos TB, Fernandes F, Silveira N, Coimbra A, Medeiros G, Painho M (2005) Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecol Indic 5:151–169

    Article  CAS  Google Scholar 

  • Charriau A, Lesven L, Gao Y, Leermakers M, Baeyens W, Ouddane B, Billon G (2011) Trace metal behaviour in riverine sediments: role of organic matter and sulfides. Appl Geochem 26:80–80

    Article  CAS  Google Scholar 

  • Dabrin A, Durand CL, Garric J, Geffard O, Ferrari BJD, Coquery M (2012) Coupling geochemical and biological approaches to assess the bioavailability of cadmium in freshwater sediment. Sci Total Environ 424:308–315

    Article  CAS  Google Scholar 

  • Davison W, Zhang H (1994) In situ speciation measurements of trace components in natural waters using thin film technique. Nature 367:546–548

    Article  CAS  Google Scholar 

  • de Deckere E, de Cooman W, Leloup V, Meire P, Schmitt C, von der Ohe PC (2011) Development of sediment quality guidelines for freshwater ecosystems. Soils Sediments 11:504–517

    Article  Google Scholar 

  • De Jonge M, Dreesen F, De Paepe J, Blust R, Bervoets L (2009) Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions? Environ Sci Technol 43:4510–4516

    Article  Google Scholar 

  • De Jonge M, Teuchies J, Meire P, Blust R, Bervoets L (2012) The impact of increased oxygen conditions on metal-contaminated sediment part II: effects on metal accumulation and toxicity in aquatic invertebrates. Water Res 46:3387–3397

    Article  Google Scholar 

  • Dell’Anno A, Mei M, Ianni C, Danovaro R (2003) Impact of bioavailable heavy metals on bacterial activities in coastal marine sediments. World J Microbiol Biotechnol 19:93–100

    Article  Google Scholar 

  • DelValls TA, Conradi M (2000) Advances in marine ecotoxicology: laboratory tests versus field assessments data on sediment quality studies. Cienc Mar 26:39–64

    CAS  Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26:96–101

    Article  Google Scholar 

  • Filgueiras AV, Lavilla I, Bendicho (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857

    Article  CAS  Google Scholar 

  • Ferrari BJD, Vignati DAL, Dominik J (2014) Bioaccumulation kinetics and effects of sediment-bound contaminants on chironomids in deep waters: new insights using a low-disturbance in situ system. Environ Technol 35–4:456–469

    Article  Google Scholar 

  • Fischer H, Wanner SC, Pusch M (2002) Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochem 61:37–55

    Article  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Gadd MG (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiol 156:609–643

    Article  CAS  Google Scholar 

  • Ganguly S, Jana BB (2002) Cadmium induced adaptive responses of certain biogeochemical cycling bacteria in an aquatic system. Water Res 36:1667–1676

    Article  CAS  Google Scholar 

  • Gillan DC, Pernet P (2007) Adherent bacteria in heavy metal contaminated marine sediments. Biofouling 23:1–13

    Article  Google Scholar 

  • Gillan DC, Pede A, Sabbe K, Gao Y, Leermakers M, Baeyens W, Louriño Cabana B, Billon G (2012) Effect of bacterial mineralization of phytoplankton-derived phytodetritus on the release of arsenic, cobalt and manganese from muddy sediments in the Southern North Sea. A microcosm study. Sci Total Environ 419:98–108

    Article  CAS  Google Scholar 

  • Gimbert F, Geffard A, Guédron S, Dominik J, Ferrari BJD (2016) Mercury tissue residue approach in Chironomus riparius: involvement of toxicokinetics and comparison of subcellular fractionation methods. Aquatic Tox 171:1–8

    Article  CAS  Google Scholar 

  • Hamdoun H, Van-Veen E, Basset B, Lemoine M, Coggan J, Leleyter L, Baraud F (2015) Characterization of harbor sediments from the English Channel: assessment of heavy metal enrichment, biological effect and mobility. Mar Pollut Bull 90:273–280

    Article  CAS  Google Scholar 

  • Hu Y, Cheng HF (2013) Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region. Environ Sci Technol 47:3752–3760

    Article  CAS  Google Scholar 

  • Leppänen MT, Postma JF, Groenendijk D, Kukkonen JVK, Bickert-de Jong MC (1998) Feeding activity of midge larvae (Chirnomus riparius Meigen) in metal-polluted river sediments. Ecotox and Environ Safety 41:251–257

    Article  Google Scholar 

  • Lesven L, Gao Y, Billon G, Leermakers M, Ouddane B, Fischer JC, Bayens W (2008) Early diagenetic processes aspects controlling the mobility of dissolved trace metals in three riverine sediments columns. Sci Total Environ 407–1:447–459

    Article  Google Scholar 

  • Lesven L, Lourino-Cabana B, Billon G, Recourt P, Ouddane B, Mikkelsen O, Boughriet A (2010) On metal diagenesis in contaminated sediments of the Deûle River (Northern France). Appl Geochem 25:1361–1373

    Article  CAS  Google Scholar 

  • Lors C, Tiffreau C, Laboudigue A (2004) Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments. Chemosphere 56:619–630

    Article  CAS  Google Scholar 

  • Lourino-Cabana B, Lesven L, Charriau A, Billon G, Ouddane B, Boughriet A (2011) Potential risks of metal toxicity in contaminated sediments of Deûle River in Northern France. J Hazard Mater 186:2129–2137

    Article  CAS  Google Scholar 

  • Magalhães C, Costa J, Teixeira C, Bordalo AA (2007) Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary. Portugal Mar Chem 107:332–341

    Article  Google Scholar 

  • Middelboe M, Glud RN (2003) Distribution of viruses and bacteria in relation to diagenetic activity in an estuarine sediment. Limnol Oceanogr 48:1447–1456

    Article  Google Scholar 

  • Nealson KH (1997) Sediment bacteria: who’s there, what are they doing, and what’s new? Annu Rev Eart Planet Sci 25:403–434

    Article  CAS  Google Scholar 

  • Nemati K, Kartini Abu Bakar N, Radzi Abas M, Sobhanzadeh E (2011) Speciation of heavy metals by modified BCR sequential extraction procedure in different depth of sediments from Sungai Buloh, Selangor, Malaysia. J Hazard Mater 192:402–410

    CAS  Google Scholar 

  • Novitsky JA (1983) Heterotrophic activity throughout a vertical profile of seawater and sediment in Halifax Harbor, Canada. Appl Environ Microbiol 45:1753–1760

    CAS  Google Scholar 

  • Odume ON, Muller WJ (2011) Diversity and structure of Chironomidae communities in relation to water quality differences in the Swartkops River. Phys Chem Earth 36:929–938

    Article  Google Scholar 

  • Pandey M, Tripathi S, Pandey AK, Tripathi BD (2014) Risk assessment of metal species in sediments of the river Ganga. Catena 122:140–149

    Article  CAS  Google Scholar 

  • de Passos E A, Alves JC, dos Santos IS, do Alves J PH, Garcia CAB, Costa ACS (2010) Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principal component analysis. Microchem J 96:50–57

    Article  Google Scholar 

  • Péry ARR, Mons R, Flammarion P, Lagadic L, Garric J (2002) Amodeling approach to link food availability, growth, emergence, and reproduction for the midge Chironomus riparius. Environ Toxicol Chem 21:2507–2513

    Article  Google Scholar 

  • Péry ARR, Geffard A, Conrad A, Mons R, Garric J (2008) Assessing the risk of metal mixtures in contaminated sediments on Chironomus riparius based on cytosolic accumulation. Ecotox Environ Saf 71:869–873

    Article  Google Scholar 

  • Piotrowska-Seget Z, Cycon M, Kozdrój J (2005) Metal-tolerant bacteria occurring in heavily polluted soil and mine soil. Appl Soil Ecol 28:237–246

    Article  Google Scholar 

  • Prygiel E (2013) Impact of sediment resuspension events due to boat traffic in channelled river on the water bodies quality. Study case of the Artois-Picardie basin. Dissertation, University of Lille1

  • Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33:576–582

    Article  CAS  Google Scholar 

  • Rauret G, Lopez-Sanchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1998) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61

    Article  Google Scholar 

  • Reis MP, Barbosa FAR, Chartone-Souza E, Nascimento AMA (2012) The prokaryotic community of a historically mining-impacted tropical stream sediment is as diverse as that from a pristine stream sediment. Extremophiles 17:301–309

    Article  Google Scholar 

  • Roosa S, Wattiez R, Prygiel E, Lesven L, Billon G, Gillan DC (2014a) A) Bacterial metal resistance genes and metal bioavailability in contaminated sediments. Environ Pollut 189:143–151

    Article  CAS  Google Scholar 

  • Roosa S, Vander Wauven C, Billon G, Matthijs S, Wattiez R, Gillan DC (2014b) B) The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability. Res Microbiol 165:647–656

    Article  CAS  Google Scholar 

  • Roussiez V, Ludwig W, Radakovitch O, Probst J-L, Monaco A, Charrière B, Buscail R (2011) Fate of metals in coastal sediments of a Mediterranean flood-dominated system: an approach based on total and labile fractions. Estuar Coast Shelf Sci 92:486–495

    Article  CAS  Google Scholar 

  • Sahm K, Berninger UG (1998) Abundance, vertical distribution, and community structure of benthic prokaryotes from permanently cold marine sediments. Mar Ecol Prog Ser 165:71–80

    Article  Google Scholar 

  • Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–710

    Article  Google Scholar 

  • Sundaray SK, Nayak BB, Lin S, Bhatta D (2011) Geochemical speciation and risk assessment of heavy metal in the river estuarine sediments—a case study: Mahanadi Basin, India. J Hazard Mater 186:1837–1846

    Article  CAS  Google Scholar 

  • Sterckeman T, Douay F, Baize D, Fourrier H, Proix N, Schwartz C (2006) Trace elements in soils developed in sedimentary materials from Northern France. Geoderma 136:912–929

    Article  CAS  Google Scholar 

  • USEPA (2004) The incidence and severity of sediment contamination in surface waters of the United States, national sediment quality surveys: second edition, United States Environmental Protection Agency, Office of Science and Technology, Standards and Health Protection Division, Washington

  • Wang L, Liu L, Zheng B, Zhu Y, Wang X (2013) Analysis of the bacterial community in the two typical intertidal sediments of Bohai Bay, China by pyrosequencing. Mar Pol Bull 72:181–187

    Article  CAS  Google Scholar 

  • Wright MS, Peltier GL, Stepanauskas R, McArthur JV (2006) Bacterial tolerances to metals and antibiotics in metal-contaminated and reference streams. FEMS Microbiol Ecol 58:293–302

    Article  CAS  Google Scholar 

  • Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a FRIA grant to Stéphanie Roosa and a FNRS grant to David C. Gillan and Ruddy Wattiez (FRFC Nr 2.4577.12). The authors would like to thank David Dumoulin, Veronique Alaimo, and Christine Grare for their technical assistance. This study was also partly funded by Voies Navigables de France, l’Agence de l’Eau Artois-Picardie, and the Region Nord-Pas de Calais.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Roosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Stéphanie Roosa and Emilie Prygiel contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roosa, S., Prygiel, E., Lesven, L. et al. On the bioavailability of trace metals in surface sediments: a combined geochemical and biological approach. Environ Sci Pollut Res 23, 10679–10692 (2016). https://doi.org/10.1007/s11356-016-6198-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6198-z

Keywords

Navigation