Skip to main content
Log in

Traffic aerosol lobar doses deposited in the human respiratory system

  • Employ of Multivariate Analysis and Chemometrics in Cultural Heritage and Environment Fields
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aerosol pollution in urban environments has been recognized to be responsible for important pathologies of the cardiovascular and respiratory systems. In this perspective, great attention has been addressed to Ultra Fine Particles (UFPs < 100 nm), because they efficiently penetrate into the respiratory system and are capable of translocating from the airways into the blood circulation. This paper describes the aerosol regional doses deposited in the human respiratory system in a high-traffic urban area. The aerosol measurements were carried out on a curbside in downtown Rome, on a street characterized by a high density of autovehicular traffic. Aerosol number-size distributions were measured by means of a Fast Mobility Particle Sizer in the range from 5.6 to 560 nm with a 1 s time resolution. Dosimetry estimates were performed with the Multiple-Path Particle Dosimetry model by means of the stochastic lung model. The exposure scenario close to traffic is represented by a sequence of short-term peak exposures: about 6.6 × 1010 particles are deposited hourly into the respiratory system. After 1 h of exposure in proximity of traffic, 1.29 × 1010, 1.88 × 1010, and 3.45 × 1010 particles are deposited in the head, tracheobronchial, and alveolar regions. More than 95 % of such doses are represented by UFPs. Finally, according to the greater dose estimated, the right lung lobes are expected to be more susceptible to respiratory pathologies than the left lobes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anjilvel S, Asgharian BA (1995) Multiple-path model of particle deposition in the rat lung. Fundam Appl Toxicol 28:41–50

    Article  CAS  Google Scholar 

  • Applied Research Associates (ARA) 2009 Multiple-Path Particle Dosimetry Model (MPPD v 2.11). http://www.ara.com

  • Asgharian B, Hofmann W, Bergmann R (2001) Particle deposition in a multiple-path model of the human lung. Aerosol Sci Technol 34:332–339

    Article  CAS  Google Scholar 

  • Avino P, Manigrasso M (2008) Ten-year measurements of gaseous pollutants in urban air by an open-path analyzer. Atmos Environ 42:4138–4148

    Article  CAS  Google Scholar 

  • Avino P, Brocco D, Cecinato A, Lepore L, Balducci C (2002) Carbonaceous components in atmospheric aerosol: measurement procedures and characterization. Ann Chim 92:333–341

    CAS  Google Scholar 

  • Avino P, De Lisio V, Grassi M, Lucchetta MC, Messina B, Monaco G, Petraccia L, Quartieri G, Rosentzwig R, Russo MV, Spada S, Valenzi VI (2004) Influence of air pollution on chronic obstructive respiratory diseases: comparison between city (Rome) and hillcountry environments and climates. Ann Chim 94:629–636

    Article  CAS  Google Scholar 

  • Avino P, Casciardi S, Fanizza C, Manigrasso M (2011) Deep investigation of ultrafine particles in urban air. Aerosol Air Qual Res 11:654–663

    CAS  Google Scholar 

  • Avino P, Manigrasso M, Fanizza C, Carrai P, Solfanelli L (2013a) Submicron particles in smoke resulting from welding alloys and cast alloy in metalworking industry. Med Lav 104:335–350

    CAS  Google Scholar 

  • Avino P, Lopez F, Manigrasso M (2013b) Regional deposition in human respiratory system of submicrometer aerosol determined at 1 Hz frequency. Aerosol Air Qual Res 13:1702–1711

    Google Scholar 

  • Avino P, Manigrasso M, Rosada A, Dodaro A (2015a) Measurement of organic and elemental carbon in downtown Rome and background area: physical behavior and chemical speciation. Environ Sci Process Impacts 17:300–315

    Article  CAS  Google Scholar 

  • Avino P, Manigrasso M, Pandolfi P, Tornese C, Settimi D, Paolucci N (2015b) Submicron particles during macro-and micro-weldings procedures in industrial indoor environments and health implications for welding operators. Metals 5:1045–1060

    Article  CAS  Google Scholar 

  • Brook RD, Brook JR, Urch B, Vincent R, Rajagopalan S, Silverman F (2002) Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation 105:1534–1536

    Article  CAS  Google Scholar 

  • Delfino RJ, Zeiger RS, Seltzer JM, Street DH (1998) Symptoms in pediatric asthmatics and air pollution: differences in effects by symptom severity, anti-inflammatory medication use and particulate averaging time. Environ Health Perspect 106:751–761

    Article  CAS  Google Scholar 

  • Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Union. L 152 11 June 2008.

  • Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, Samet JM (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA, J Am Med Assoc 295:1127–1134

    Article  CAS  Google Scholar 

  • Donaldson K, Stone V, Seaton A, MacNee W (2001) Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect 109:523–527

    Article  CAS  Google Scholar 

  • Fanizza C, Casciardi S, Avino P, Manigrasso M (2010) Measurements and characterization by transmission electron microscopy of ultrafine particles in the urban air of Rome. Fresenius Environ Bull 19:2026–2032

    CAS  Google Scholar 

  • IARC (2015) Monographs on the evaluation of carcinogenic risks to humans: outdoor air pollution. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • ICRP (1994) Human respiratory tract model for radiological protection. A report of a task group of the International Commission on Radiological Protection. Ann ICRP 24:1–482

    Google Scholar 

  • Jeong C-H, Greg J, Evans GJ (2009) Inter-comparison of a fast mobility particle sizer and a scanning mobility particle sizer incorporating an ultrafine water-based condensation particle counter. Aerosol Sci Technol 43:364–373

    Article  CAS  Google Scholar 

  • Koblinger L, Hofmann W (1985) Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Phys Med Biol 30:541–556

    Article  CAS  Google Scholar 

  • Koblinger L, Hofmann W (1990) Monte Carlo modeling of aerosol deposition in human lungs. Part I: simulation of particle transport in stochastic lung structure. J Aerosol Sci 21:661–674

    Article  Google Scholar 

  • Manigrasso M, Avino P (2012) Fast evolution of urban ultrafine particles: implications for deposition doses in the human respiratory system. Atmos Environ 51:116–123

    Article  CAS  Google Scholar 

  • Manigrasso M, Avino P, Fanizza C (2009) Ultrafine particles in the urban area of Rome. Fresenius Environ Bull 18:1341–1347

    CAS  Google Scholar 

  • Manigrasso M, Stabile L, Avino P, Buonanno G (2013) Influence of measurement frequency on the evaluation of short-term dose of sub-micrometric particles during indoor and outdoor generation events. Atmos Environ 67:130–142

    Article  CAS  Google Scholar 

  • Manigrasso M, Buonanno G, Fuoco FC, Stabile L, Avino P (2015a) Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environ Pollut 196:257–267

    Article  CAS  Google Scholar 

  • Manigrasso M, Buonanno G, Stabile L, Morawska L, Avino P (2015b) Particle doses in the pulmonary lobes of electronic and conventional cigarette users. Environ Pollut 202:24–31

    Article  CAS  Google Scholar 

  • Marini S, Buonanno G, Stabile L, Avino P (2015) A benchmark for numerical scheme validation of airborne particle exposure in street canyons. Environ Sci Pollut Res 22:2051–2063

    Article  CAS  Google Scholar 

  • NEPC (1998) National environment protection measure and impact statement for ambient air quality. National Environment Protection Council, Adelaide

    Google Scholar 

  • NEPC (2003) Variation to the national environment protection (ambient air quality) measure. National Environment Protection Council, Adelaide

    Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–840

    Article  Google Scholar 

  • Parkash O (1977) Lung cancer. A statistical study based on autopsy data from 1928 to 1972. Respiration 34:295–304

    Article  CAS  Google Scholar 

  • Peters A, Veronesi B, Calderón-Garcidueñas L, Gehr P, Chen LC, Geiser M, Reed W, Rothenrutishauser B, Schürch S, Schulz H (2006) Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol 3:13. doi:10.1186/1743-8977-3-13

    Article  Google Scholar 

  • Price OT, Asgharian B, Miller FJ, Cassee FR, de Winter-Sorkina R (2002) Multiple Path Particle Dosimetry Model (MPPD v. 1.0): a model for human and rat airway particle dosimetry, v 1.0. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. http://www.ara.com/products/mppd.htm. Accessed 21 July 2015.

  • Simkhovich BZ, Kleinman MT, Kloner RA (2008) Air pollution and cardiovascular injury epidemiology, toxicology, and mechanisms. J Am Coll Cardiol 52:719–726

    Article  CAS  Google Scholar 

  • Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A (2010) Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci 14:809–821

    CAS  Google Scholar 

  • TSI (2009) www.tsi.com/uploadedFiles/Product_Information/Literature/Catalogs/Particle_Catalog_ Web.pdf. Accessed 21 July 2015.

  • USEPA (2006) U.S. Environmental Protection Agency 40 CFR Part 50, 2006. In: National Ambient Air Quality Standards for Particulate Matter, Part II. Final Rule

  • Von Klot S, Wölke G, Tuch T, Heinrich J, Dockery DW, Schwartz J, Kreylingz WG, Wichmann HE, Peters A (2002) Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Respir J 20:691–702

    Article  Google Scholar 

  • Winkler-Heil R, Hofmann W (2009) Inter- and intra-lobar deposition of inhaled particles. Proc. Eur Aerosol Conf 2009, Karlsruhe, Abstract T101A01.

Download references

Acknowledgments

The authors wish to thank ARA for MPPD version 2.1.

This study was supported by INAIL grants P19L08, P20L01 and P20L09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Manigrasso.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manigrasso, M., Vernale, C. & Avino, P. Traffic aerosol lobar doses deposited in the human respiratory system. Environ Sci Pollut Res 24, 13866–13873 (2017). https://doi.org/10.1007/s11356-015-5666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5666-1

Keywords

Navigation