Skip to main content
Log in

A benchmark for numerical scheme validation of airborne particle exposure in street canyons

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Measurements of particle concentrations and distributions in terms of number, surface area, and mass were performed simultaneously at eight sampling points within a symmetric street canyon of an Italian city. The aim was to obtain a useful benchmark for validation of wind tunnel experiments and numerical schemes: to this purpose, the influence of wind directions and speeds was considered. Particle number concentrations (PNCs) were higher on the leeward side than the windward side of the street canyon due to the wind vortex effect. Different vertical PNC profiles were observed between the two canyon sides depending on the wind direction and speed at roof level. A decrease in particle concentrations was observed with increasing rooftop wind speed, except for the coarse fraction indicating a possible particle resuspension due to the traffic and wind motion. This study confirms that particle concentration fields in urban street canyons are strongly influenced by traffic emissions and meteorological parameters, especially wind direction and speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bauman SE, Williams ET, Finston HL, Ferrand EF, Sontowski J (1982) Street level versus rooftop sampling: carbon monoxide and aerosol in New York City. Atmos Environ 16(10):2489–2496. doi:10.1016/0004-6981(82)90139-1 (1967)

    Article  CAS  Google Scholar 

  • Brugge D, Durant J, Rioux C (2007) Near-highway pollutants in motor vehicle exhaust: a review of epidemiologic evidence of cardiac and pulmonary health risks. Environ Health 6(1):1–12. doi:10.1186/1476-069x-6-23

    Article  Google Scholar 

  • Buonanno G, Stabile L, Avino P, Vanoli R (2010) Dimensional and chemical characterization of particles at a downwind receptor site of a waste-to-energy plant. Waste Manag 30(7):1325–1333. doi:10.1016/j.wasman.2009.12.025

    Article  CAS  Google Scholar 

  • Buonanno G, Fuoco FC, Stabile L (2011) Influential parameters on particle exposure of pedestrians in urban microenvironments. Atmos Environ 45(7):1434–1443

    Article  CAS  Google Scholar 

  • Buonanno G, Fuoco FC, Marini S, Stabile L (2012a) Particle resuspension in school gyms during physical activities. Aerosol Air Qual Res 12:803–813

    Google Scholar 

  • Buonanno G, Marini S, Morawska L, Fuoco FC (2012b) Individual dose and exposure of Italian children to ultrafine particles. Sci Total Environ 438:271–277

    Article  CAS  Google Scholar 

  • Buonanno G, Morawska L, Stabile L, Wang L, Giovinco G (2012c) A comparison of submicrometer particle dose between Australian and Italian people. Environ Pollut 169:183–189

    Article  CAS  Google Scholar 

  • Buonanno G, Jayaratne RE, Morawska L, Stabile L (2014) Metrological performances of a diffusion charger particle counter for personal monitoring. Aerosol Air Qual Res 14:156–167. doi:10.4209/aaqr.2013.05.0152

    Google Scholar 

  • Burtscher H, Schüepp K (2012) The occurrence of ultrafine particles in the specific environment of children. Paediatr Respir Rev 13(2):89–94. doi:10.1016/j.prrv.2011.07.004

    Google Scholar 

  • Chan LY, Kwok WS (2000) Vertical dispersion of suspended particulates in urban area of Hong Kong. Atmos Environ 34(26):4403–4412. doi:10.1016/S1352-2310(00)00181-3

    Article  CAS  Google Scholar 

  • Colls JJ, Micallef A (1999) Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon. Sci Total Environ 235(1–3):221–233. doi:10.1016/S0048-9697(99)00194-1

    Article  CAS  Google Scholar 

  • DePaul FT, Sheih CM (1985) A tracer study of dispersion in an urban street canyon. Atmos Environ 19(4):555–559. doi:10.1016/0004-6981(85)90034-4, 1967

    Article  CAS  Google Scholar 

  • EPA US (2009) Particulate matter: health and environment. US Environmental Protection Agency. http://www.epa.gov/oar/particlepollution/health.html

  • Heal MR, Kumar P, Harrison RM (2012) Particles, air quality, policy and health. Chem Soc Rev 41(19):6606–6630. doi:10.1039/c2cs35076a

    Article  CAS  Google Scholar 

  • Johansson C, Norman M, Gidhagen L (2007) Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environ Monit Assess 127(1–3):477–487

    Article  CAS  Google Scholar 

  • Kittelson DB (1998) Engines and nanoparticles: a review. J Aerosol Sci 29(5–6):575–588. doi:10.1016/S0021-8502(97)10037-4

    Article  CAS  Google Scholar 

  • Kleeman MJ, Schauer JJ, Cass GR (2000) Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ Sci Technol 34:1132–1142

    Article  CAS  Google Scholar 

  • Krudysz M, Moore K, Geller M, Sioutas C, Froines J (2009) Intra-community spatial variability of particulate matter size distributions in Southern California/Los Angeles. Atmos Chem Phys 9(3):1061–1075. doi:10.5194/acp-9-1061-2009

    Article  CAS  Google Scholar 

  • Kumar P, Fennell O, Langley D, Britter R (2008a) Pseudo-simultaneous measurements for the vertical variation of coarse, fine and ultrafine particles in an urban street canyon. Atmos Environ 42:4304–4319

    Article  CAS  Google Scholar 

  • Kumar P, Fennell P, Britter R (2008b) Measurements of particles in the 5–1000 nm range close to road level in an urban street canyon. Sci Total Environ 390(2–3):437–447

    Article  CAS  Google Scholar 

  • Kumar P, Garmory A, Ketzel M, Berkowicz R, Britter R (2009) Comparative study of measured and modelled number concentrations of nanoparticles in an urban street canyon. Atmos Environ 43:949–958

    Article  CAS  Google Scholar 

  • Li XL, Wang JS, Tu XD, Liu W, Huang L (2007) Vertical variations of particle number concentration and size distribution in a street canyon in Shanghai. China Sci Total Environ 378:306–316

    Article  CAS  Google Scholar 

  • Longley ID, Gallagher MW, Dorsey JR, Flynn M (2004a) A case-study of fine particle concentrations and fluxes measured in a busy street canyon in Manchester, UK. Atmos Environ 38:3595–3603

    Article  CAS  Google Scholar 

  • Longley ID, Gallagher MW, Dorsey JR, Flynn M, Bower KN, Allan JD (2004b) Street canyon aerosol pollutant transport measurements. Sci Total Environ 335:327–336

    Article  Google Scholar 

  • Micallef A, Deuchar CN, Colls JJ (1998) Indoor and outdoor measurements of vertical concentration profiles of airborne particulate matter. Sci Total Environ 215(3):209–216

    Article  CAS  Google Scholar 

  • Mokhtar MA, Jayaratne R, Morawska L, Mazaheri M, Surawski N, Buonanno G (2013) NSAM-derived total surface area versus SMPS-derived “mobility equivalent” surface area for different environmentally relevant aerosols. J Aerosol Sci 66:1–11

    Article  CAS  Google Scholar 

  • Monn C (2001) Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmos Environ 35:1–32

    Article  CAS  Google Scholar 

  • Morawska L, Bofinger ND, Kocis L, Nwankwoala A (1998) Submicron and supermicron particles from diesel vehicle emissions. Environ Sci Technol 32:2033–2042

    Article  CAS  Google Scholar 

  • Nazridoust K, Ahmadi G (2006) Airflow and pollutant transport in street canyons. J Wind Eng Ind Aerodyn 94(6):491–522. doi:10.1016/j.jweia.2006.01.012

    Article  Google Scholar 

  • Oberdorster G, Utell MJ (2002) Ultrafine particles in the urban air: to the respiratory tract—and beyond? Environ Health Perspect 110(8):A440–A441

    Article  Google Scholar 

  • Oberdorster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder AC (2000) Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst 96:5–74

    Google Scholar 

  • Park SK, Kim SD, Lee H (2004) Dispersion characteristics of vehicle emission in an urban street canyon. Sci Total Environ 323:263–271

    Article  CAS  Google Scholar 

  • Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56:709–742

    Article  CAS  Google Scholar 

  • Puustinen A, Hämeri K, Pekkanen J, Kulmala M, de Hartog J, Meliefste K, ten Brink H, Kos G, Katsouyanni K, Karakatsani A, Kotronarou A, Kavouras I, Meddings C, Thomas S, Harrison R, Ayres JG, van der Zee S, Hoek G (2007) Spatial variation of particle number and mass over four European cities. Atmos Environ 41(31):6622–6636. doi:10.1016/j.atmosenv.2007.04.020

    Article  CAS  Google Scholar 

  • Qin Y, Kot SC (1993) Dispersion of vehicular emission in street canyons, Guangzhou city, South China (PRC). Atmos Environ 27B:283–291

    Article  CAS  Google Scholar 

  • Ristovski Z, Morawska L, Hitchins J (1998) Submicrometer and supermicrometer particulate emission from spark ignition vehicles. Environ Sci Technol 32:3845–3852

    Article  CAS  Google Scholar 

  • Scungio M, Arpino F, Stabile L, Buonanno G (2013) Numerical simulation of ultrafine particle dispersion in urban street canyons with the Spalart-Allmaras turbulence model. Aerosol Air Qual Res 13:1423–1437

    Google Scholar 

  • Stabile L, Cauda E, Marini S, Buonanno G (2013) On the performances of a portable nanoparticle sizer measuring different aerosols. Ann. Occup Hyg Submitted

  • Turner JR, Allen DT (2008) Transport of atmospheric fine particulate matter: part 2—findings from recent field programs on the intraurban variability in fine particulate matter. J Air Waste Manag Assoc 58(2):196–215

    Article  CAS  Google Scholar 

  • Vakeva M, Hameri K, Kulmala M, Lahdes R, Ruuskanen J, Laitinen T (1999) Street level versus rooftop concentrations of submicron aerosol particles and gaseous pollutants in an urban street canyon. Atmos Environ 33:1385–1397

    Article  CAS  Google Scholar 

  • Weber S, Kuttler W, Weber K (2006) Flow characteristics and particle mass and number concentration variability within a busy street canyon. Atmos Environ 40:7565–7578

    Article  CAS  Google Scholar 

  • Xie X, Wang J, Huang Z (2009) Traffic emission transportation in street canyons. J Hydrodyn 21(1):108–117

    Article  Google Scholar 

  • Zhu Y, Hinds WC, Kim S, Sioutas C (2002) Concentration and size distribution of ultra fine particles near a major highway. J Am Med Assoc 52:1032–1042

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Buonanno.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 22 kb)

ESM 2

(TXT 2852 kb)

ESM 3

(TXT 6 kb)

ESM 4

(TXT 5771 kb)

ESM 5

(TXT 9153 kb)

ESM 6

(TXT 5759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marini, S., Buonanno, G., Stabile, L. et al. A benchmark for numerical scheme validation of airborne particle exposure in street canyons. Environ Sci Pollut Res 22, 2051–2063 (2015). https://doi.org/10.1007/s11356-014-3491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3491-6

Keywords

Navigation