Skip to main content
Log in

Impact of wastewater on fish health: a case study at the Neckar River (Southern Germany) using biomarkers in caged brown trout as assessment tools

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present work describes a field survey aiming at assessing the impact of a sewage treatment plant (STP) effluent on fish health by means of biomarkers. Indigenous fish were absent downstream of the STP. To elucidate the reason behind this, brown trout (Salmo trutta f. fario) were exposed in floating steel cages up- and downstream of a STP located at the Neckar River near Tübingen (Southern Germany), for 10 and 30 days. A combination of biomarker methods (histopathological investigations, analysis of the stress protein Hsp70, micronucleus test, B-esterase assays) offered the possibility to investigate endocrine, geno-, proteo- and neurotoxic effects in fish organs. Biological results were complemented with chemical analyses on 20 accumulative substances in fish tissue. Even after short-term exposure, biomarkers revealed clear evidence of water contamination at both Neckar River sites; however, physiological responses of caged brown trout were more severe downstream of the STP. According to this, similar bioaccumulation levels (low μg/kg range) of DDE and 12 polycyclic aromatic hydrocarbons (PAHs) were detected at both sampling sites, while up to fourfold higher concentrations of four PAHs, methyl-triclosan and two synthetic musks occurred in the tissues of downstream-exposed fish. The results obtained in this study suggest a constitutive background pollution at both sites investigated at the Neckar River and provided evidence for the additional negative impact of the STP Tübingen on water quality and the health condition of fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACE:

Acenaphthene

ACY:

Acenaphthylene

AChE:

Acetylcholinesterase

AHTN:

Tonaide

ANT:

Anthracene

BA:

Benz[a]anthracene

BAP:

Benzo[a]pyrene

BBF:

Benzo[b]fluoranthene

BKF:

Benzo[k]fluoranthene

CbE:

Carboxylesterase

CHR:

Chrysene

DDE:

Dichlorodiphenyldichloroethylene

DW:

Dry weight

FL:

Fluorene

FLU:

Fluoranthene

GHI:

Benzo[ghi]perylene

HHCB:

Galaxolide

Hsp:

Heat shock protein

IND:

Indeno[1,2,3-cd]pyrene

MTCS:

Methyl-triclosan

NAP:

Naphthalene

NPA:

4-nitrophenyl acetate

NPV:

4-nitrophenyl valerate

PAH:

Polycyclic aromatic hydrocarbon

PHE:

Phenanthrene

PYR:

Pyrene

STP:

Sewage treatment plant

References

  • Abdel-Moneim AM, Al-Kahtani MA, Elmenshawy OM (2012) Histopathological biomarkers in gills and liver of Oreochromis niloticus from polluted wetland environments, Saudi Arabia. Chemosphere 88(8):1028–1035. doi:10.1016/j.chemosphere.2012.04.001

    Article  CAS  Google Scholar 

  • Abrahamson A, Andersson C, Jönsson ME, Fogelberg O, Örberg J, Brunström B, Brandt I (2007) Gill EROD in monitoring of CYP1A inducers in fish—a study in rainbow trout (Oncorhynchus mykiss) caged in Stockholm and Uppsala waters. Aquat Toxicol 85(1):1–8. doi:10.1016/j.aquatox.2007.07.013

    Article  CAS  Google Scholar 

  • Aguayo S, Muñoz MJ, de la Torre A, Roset J, de la Peña E, Carballo M (2004) Identification of organic compounds and ecotoxicological assessment of sewage treatment plants (STP) effluents. Sci Total Environ 328(1–3):69–81. doi:10.1016/j.scitotenv.2004.02.013

    Article  CAS  Google Scholar 

  • Al-Ghais SM (2013) Acetylcholinesterase, glutathione and hepatosomatic index as potential biomarkers of sewage pollution and depuration in fish. Mar Pollut Bull 74(1):183–186. doi:10.1016/j.marpolbul.2013.07.005

    Article  CAS  Google Scholar 

  • Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res 343:121–135

    Article  CAS  Google Scholar 

  • Amin AB, Mortensen L, Poppe T (1992) Histology atlas, normal structure of salmonids. Offset Nord AS, Norway

    Google Scholar 

  • Ayllón F, Suciu R, Gephard S, Juanes F, Garcia-Vazquez E (2000) Conventional armament wastes induce micronuclei in wild brown trout Salmo trutta. Mutat Res Genet Toxicol Environ Mutagen 470(2):169–176. doi:10.1016/S1383-5718(00)00101-7

    Article  Google Scholar 

  • Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B (2012) Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res Int 19(4):1044–1065. doi:10.1007/s11356-011-0632-z

    Article  CAS  Google Scholar 

  • Bernet D, Schmidt H, Wahli T, Burkhardt-Holm P (2001) Effluent from a sewage treatment works causes changes in serum chemistry of brown trout (Salmo trutta L.). Ecotoxicol Environ Saf 48(2):140–147. doi:10.1006/eesa.2000.2012

    Article  CAS  Google Scholar 

  • Boettcher M, Grund S, Keiter S, Kosmehl T, Reifferscheid G, Seitz N, Rocha PS, Hollert H, Braunbeck T (2010) Comparison of in vitro and in situ genotoxicity in the Danube River by means of the comet assay and the micronucleus test. Mutat Res Genet Toxicol Environ Mutagen 700(1–2):11–17. doi:10.1016/j.mrgentox.2010.04.016

    Article  CAS  Google Scholar 

  • Brack W, Schirmer K, Erdinger L, Hollert H (2005) Effect-directed analysis of mutagens and ethoxyresorufin-O-deethylase inducers in aquatic sediments. Environ Toxicol Chem 24(10):2445–2458. doi:10.1897/05-078r.1

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Braunbeck T, Brauns A, Keiter S, Hollert H, Schwartz P (2009) Fish populations under stress—the example of the Lower Neckar River (Fischpopulationen unter Stress—das Beispiel des Unteren Neckars). Environ Sci Eur (UWSF) 21(2):197–211. doi:10.1007/s12302-009-0044-6

    Google Scholar 

  • Carballo M, Aguayo S, de la Torre A, Muñoz MJ (2005) Plasma vitellogenin levels and gonadal morphology of wild carp (Cyprinus carpio L.) in a receiving rivers downstream of sewage treatment plants. Sci Total Environ 341(1–3):71–79. doi:10.1016/j.scitotenv.2004.08.021

    Article  CAS  Google Scholar 

  • Carlsson G, Norrgren L (2004) Synthetic musk toxicity to early life stages of zebrafish (Danio rerio). Arch Environ Contam Toxicol 46(1):102–105. doi:10.1007/s00244-003-2288-2

    Article  CAS  Google Scholar 

  • Carney Almroth B, Albertsson E, Sturve J, Förlin L (2008) Oxidative stress, evident in antioxidant defences and damage products, in rainbow trout caged outside a sewage treatment plant. Ecotoxicol Environ Saf 70(3):370–378. doi:10.1016/j.ecoenv.2008.01.023

    Article  CAS  Google Scholar 

  • de la Torre FR, Salibián A, Ferrari L (2007) Assessment of the pollution impact on biomarkers of effect of a freshwater fish. Chemosphere 68(8):1582–1590. doi:10.1016/j.chemosphere.2007.02.033

    Article  Google Scholar 

  • EBT—Disposal Operating Tübingen (Entsorgungsbetriebe Tübingen) (2005) Service Report 2004 (Anerkennung Dienstleistung 2004). http://www.um.baden-wuerttemberg.de/servlet/is/11336/. Accessed 8 July 2013

  • Eckwert H, Alberti G, Kohler H-R (1997) The induction of stress proteins (Hsp) in Oniscus asellus (Isopoda) as a molecular marker of multiple heavy metal exposure: I. Principles and toxicological assessment. Ecotoxicology 6(5):249–262. doi:10.1023/a:1018682928839

    Article  CAS  Google Scholar 

  • Eggen RI, Behra R, Burkhardt-Holm P, Escher BI, Schweigert N (2004) Peer reviewed: challenges in ecotoxicology. Environ Sci Technol 38(3):58A–64A

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95. doi:10.1016/0006-2952(61)90145-9

    Article  CAS  Google Scholar 

  • Escher BI, Allinson M, Altenburger R, Bain PA, Balaguer P, Busch W, Crago J, Denslow ND, Dopp E, Hilscherova K, Humpage AR, Kumar A, Grimaldi M, Jayasinghe BS, Jarosova B, Jia A, Makarov S, Maruya KA, Medvedev A, Mehinto AC, Mendez JE, Poulsen A, Prochazka E, Richard J, Schifferli A, Schlenk D, Scholz S, Shiraishi F, Snyder S, Su G, Tang JYM, Burg BVD, Linden SCVD, Werner I, Westerheide SD, Wong CKC, Yang M, Yeung BHY, Zhang X, Leusch FDL (2013) Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ Sci Technol 48(3):1940–1956. doi:10.1021/es403899t

    Article  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70(1):603

    Article  CAS  Google Scholar 

  • Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20(1):37–45

    Article  CAS  Google Scholar 

  • Grizzle JM, Horowitz SA, Strength DR (1988) Caged fish as monitors of pollution: effects of chlorinated effluent from a wastewater treatment plant. J Am Water Resour Assoc 24(5):951–959. doi:10.1111/j.1752-1688.1988.tb03009.x

    Article  CAS  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86(11–12):377–384. doi:10.1016/j.lfs.2009.12.015

    Article  CAS  Google Scholar 

  • Haberbosch R, Hoffmann R, Wnuck H (2012) Fish fauna and fishing of the Middle Neckar River (Vom Wildfluss zur Wasserstraße - Fischfauna und Fischerei im Mittleren Neckar), 1st edn. VFG Service und Verlags GmbH, Suttgart

    Google Scholar 

  • Hallare AV, Köhler HR, Triebskorn R (2004) Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 56(7):659–666. doi:10.1016/j.chemosphere.2004.04.007

    Article  CAS  Google Scholar 

  • Henneberg A, Bender K, Blaha L, Giebner S, Kuch B, Kohler HR, Maier D, Oehlmann J, Richter D, Scheurer M, Schulte-Oehlmann U, Sieratowicz A, Ziebart S, Triebskorn R (2014) Are in vitro methods for the detection of endocrine potentials in the aquatic environment predictive for in vivo effects? Outcomes of the projects SchussenAktiv and SchussenAktivplus in the Lake Constance Area, Germany. PLoS ONE 9(6):e98307. doi:10.1371/journal.pone.0098307

    Article  Google Scholar 

  • Hofmann GE (1999) Ecologically relevant variation in induction and function of heat shock proteins in marine organisms. Am Zool 39:889–900

    CAS  Google Scholar 

  • Kerambrun E, Sanchez W, Henry F, Amara R (2011) Are biochemical biomarker responses related to physiological performance of juvenile sea bass (Dicentrarchus labrax) and turbot (Scophthalmus maximus) caged in a polluted harbour? Comp Biochem Physiol C: Toxicol Pharmacol 154(3):187–195. doi:10.1016/j.cbpc.2011.05.006

    CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211. doi:10.1021/es011055j

    Article  CAS  Google Scholar 

  • Köhler H-R, Eckwert H, Triebskorn R, Bengtsson G (1999) Interaction between tolerance and 70kDa stress protein (hsp70) induction in collembolan populations exposed to long-term metal pollution. Appl Soil Ecol 11(1):43–52. doi:10.1016/S0929-1393(98)00127-9

    Article  Google Scholar 

  • Köhler HR, Sandu C, Scheil V, Nagy-Petrica EM, Segner H, Telcean I, Stan G, Triebskorn R (2007) Monitoring pollution in river Mures, Romania, Part III: biochemical effect markers in fish and integrative reflection. Environ Monit Assess 127(1–3):47–54. doi:10.1007/s10661-006-9257-y

    Article  Google Scholar 

  • Laguerre C, Sanchez-Hernandez JC, Köhler HR, Triebskorn R, Capowiez Y, Rault M, Mazzia C (2009) B-type esterases in the snail Xeropicta derbentina: an enzymological analysis to evaluate their use as biomarkers of pesticide exposure. Environ Pollut 157(1):199–207. doi:10.1016/j.envpol.2008.07.003

    Article  CAS  Google Scholar 

  • Lange C, Kuch B, Metzger JW (2015) Occurrence and fate of synthetic musk fragrances in a small German river. J Hazard Mater 282C:34–40. doi:10.1016/j.jhazmat.2014.06.027

    Article  Google Scholar 

  • Leino RL, Jensen KM, Ankley GT (2005) Gonadal histology and characteristic histopathology associated with endocrine disruption in the adult fathead minnow (Pimephales promelas). Environ Toxicol Pharmacol 19(1):85–98. doi:10.1016/j.etap.2004.05.010

    Article  CAS  Google Scholar 

  • Leticia A-G, Gerardo G-B (2008) Determination of esterase activity and characterization of cholinesterases in the reef fish Haemulon plumieri. Ecotoxicol Environ Saf 71(3):787–797. doi:10.1016/j.ecoenv.2008.01.024

    Article  CAS  Google Scholar 

  • Liang X, Nie X, Ying G, An T, Li K (2013) Assessment of toxic effects of triclosan on the swordtail fish (Xiphophorus helleri) by a multi-biomarker approach. Chemosphere 90(3):1281–1288. doi:10.1016/j.chemosphere.2012.09.087

    Article  CAS  Google Scholar 

  • Lindström-Seppä P, Oikari A (1990) Biotransformation and other toxicological and physiological responses in rainbow trout (Salmo gairdneri Richardson) caged in a lake receiving effluents of pulp and paper industry. Aquat Toxicol 16(3):187–204. doi:10.1016/0166-445X(90)90037-P

    Article  Google Scholar 

  • Lindström A, Buerge IJ, Poiger T, Bergqvist P-A, Müller MD, Buser H-R (2002) Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol 36(11):2322–2329. doi:10.1021/es0114254

    Article  Google Scholar 

  • Liu Y, Beckingham B, Ruegner H, Li Z, Ma L, Schwientek M, Xie H, Zhao J, Grathwohl P (2013) Comparison of sedimentary PAHs in the rivers of Ammer (Germany) and Liangtan (China): differences between early- and newly-industrialized countries. Environ Sci Technol 47(2):701–709. doi:10.1021/es3031566

    Article  CAS  Google Scholar 

  • Livingstone DR (1998) The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol 120(1):43–49. doi:10.1016/s1095-6433(98)10008-9

    Article  CAS  Google Scholar 

  • Logan DT (2007) Perspective on ecotoxicology of PAHs to fish. Hum Ecol Risk Assess Int J 13(2):302–316. doi:10.1080/10807030701226749

    Article  CAS  Google Scholar 

  • Maier D, Blaha L, Giesy JP, Henneberg A, Köhler H-R, Kuch B, Osterauer R, Peschke K, Richter D, Scheurer M, Triebskorn R (2014) Biological plausibility as a tool to associate analytical data for micropollutants and effect potentials in wastewater, surface water, and sediments with effects in fishes. Water Res. doi:10.1016/j.watres.2014.08.050

  • Markwell MAK, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87(1):206–210. doi:10.1016/0003-2697(78)90586-9

    Article  CAS  Google Scholar 

  • Matozzo V, Formenti A, Donadello G, Marin MG (2012) A multi-biomarker approach to assess effects of triclosan in the clam Ruditapes philippinarum. Mar Environ Res 74:40–46. doi:10.1016/j.marenvres.2011.12.002

    Article  CAS  Google Scholar 

  • Moore MN, Depledge MH, Readman JW, Paul Leonard DR (2004) An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat Res Fundam Mol Mech Mutagen 552(1–2):247–268. doi:10.1016/j.mrfmmm.2004.06.028

    Article  CAS  Google Scholar 

  • Nicolas J-M (1999) Vitellogenesis in fish and the effects of polycyclic aromatic hydrocarbon contaminants. Aquat Toxicol 45(2–3):77–90. doi:10.1016/S0166-445X(98)00095-2

    Article  CAS  Google Scholar 

  • Oikari A (2006) Caging techniques for field exposures of fish to chemical contaminants. Aquat Toxicol 78(4):370–381

  • Oikari A, Holmbom B, Ånäs E, Miilunpalo M, Kruzynski G, Castrén M (1985) Ecotoxicological aspects of pulp and paper mill effluents discharged to an inland water system: distribution in water, and toxicant residues and physiological effects in caged fish (Salmo gairdneri). Aquat Toxicol 6(3):219–239. doi:10.1016/0166-445X(85)90006-2

    Article  CAS  Google Scholar 

  • Oliveira M, Gravato C, Guilhermino L (2012) Acute toxic effects of pyrene on Pomatoschistus microps (Teleostei, Gobiidae): mortality, biomarkers and swimming performance. Ecol Indic 19:206–214. doi:10.1016/j.ecolind.2011.08.006

    Article  CAS  Google Scholar 

  • Osterauer R, Köhler H-R (2008) Temperature-dependent effects of the pesticides thiacloprid and diazinon on the embryonic development of zebrafish (Danio rerio). Aquat Toxicol 86(4):485–494. doi:10.1016/j.aquatox.2007.12.013

    Article  CAS  Google Scholar 

  • Palanikumar L, Kumaraguru AK, Ramakritinan CM, Anand M (2012) Biochemical response of anthracene and benzo [a] pyrene in milkfish Chanos chanos. Ecotoxicol Environ Saf 75:187–197. doi:10.1016/j.ecoenv.2011.08.028

    Article  CAS  Google Scholar 

  • Pawert M, Muller E, Triebskorn R (1998) Ultrastructural changes in fish gills as biomarker to assess small stream pollution. Tissue Cell 30(6):617–626

    Article  CAS  Google Scholar 

  • Peakall DB (1994) The role of biomarkers in environmental assessment (1). Introduction. Ecotoxicol Environ Saf 3:157–160

    Article  CAS  Google Scholar 

  • Rault M, Collange B, Mazzia C, Capowiez Y (2008) Dynamics of acetylcholinesterase activity recovery in two earthworm species following exposure to ethyl-parathion. Soil Biol Biochem 40(12):3086–3091. doi:10.1016/j.soilbio.2008.09.010

    Article  CAS  Google Scholar 

  • Reynaud S, Deschaux P (2006) The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review. Aquat Toxicol 77(2):229–238. doi:10.1016/j.aquatox.2005.10.018

    Article  CAS  Google Scholar 

  • Rickwood CJ, Galloway TS (2004) Acetylcholinesterase inhibition as a biomarker of adverse effect. A study of Mytilus edulis exposed to the priority pollutant chlorfenvinphos. Aquat Toxicol 67(1):45–56. doi:10.1016/j.aquatox.2003.11.004

    Article  CAS  Google Scholar 

  • Rocha PS, Luvizotto GL, Kosmehl T, Bottcher M, Storch V, Braunbeck T, Hollert H (2009) Sediment genotoxicity in the Tiete River (Sao Paulo, Brazil): in vitro comet assay versus in situ micronucleus assay studies. Ecotoxicol Environ Saf 72(7):1842–1848. doi:10.1016/j.ecoenv.2009.04.013

    Article  CAS  Google Scholar 

  • Rodriguez-Cea A, Ayllon F, Garcia-Vazquez E (2003) Micronucleus test in freshwater fish species: an evaluation of its sensitivity for application in field surveys. Ecotoxicol Environ Saf 56(3):442–448. doi:10.1016/S0147-6513(03)00073-3

    Article  CAS  Google Scholar 

  • Rodrı́guez-Fuentes G, Gold-Bouchot G (2000) Environmental monitoring using acetylcholinesterase inhibition in vitro. A case study in two Mexican lagoons. Mar Environ Res 50(1–5):357–360. doi:10.1016/S0141-1136(00)00062-3

    Article  Google Scholar 

  • Sanchez-Hernandez JC, Mazzia C, Capowiez Y, Rault M (2009) Carboxylesterase activity in earthworm gut contents: potential (eco)toxicological implications. Comp Biochem Physiol C: Toxicol Pharmacol 150(4):503–511. doi:10.1016/j.cbpc.2009.07.009

    Google Scholar 

  • Satoh T, Hosokawa M (1998) The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol 38:257–288. doi:10.1146/annurev.pharmtox.38.1.257

    Article  CAS  Google Scholar 

  • Scheil V, Zürn A, Köhler H-R, Triebskorn R (2010) Embryo development, stress protein (Hsp70) responses, and histopathology in zebrafish (Danio rerio) following exposure to nickel chloride, chlorpyrifos, and binary mixtures of them. Environ Toxicol 25(1):83–93. doi:10.1002/tox.20477

    CAS  Google Scholar 

  • Schnell S, Martin-Skilton R, Fernandes D, Porte C (2009) The interference of nitro- and polycyclic musks with endogenous and xenobiotic metabolizing enzymes in carp: an in vitro study. Environ Sci Technol 43(24):9458–9464. doi:10.1021/es902128x

    Article  CAS  Google Scholar 

  • Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68(2):141–150. doi:10.1016/j.aquatox.2004.03.014

    Article  CAS  Google Scholar 

  • Schwaiger J, Wanke R, Adam S, Pawert M, Honnen W, Triebskorn R (1997) The use of histopathological indicators to evaluate contaminant-related stress in fish. J Aquat Ecosyst Stress Recover 6(1):75–86. doi:10.1023/a:1008212000208

    Article  CAS  Google Scholar 

  • Silva AG, Martinez CBR (2007) Morphological changes in the kidney of a fish living in an urban stream. Environ Toxicol Pharmacol 23(2):185–192. doi:10.1016/j.etap.2006.08.009

    Article  CAS  Google Scholar 

  • Simmons DB, Marlatt VL, Trudeau VL, Sherry JP, Metcalfe CD (2010) Interaction of Galaxolide(R) with the human and trout estrogen receptor-alpha. Sci Total Environ 408(24):6158–6164. doi:10.1016/j.scitotenv.2010.09.027

    Article  CAS  Google Scholar 

  • Tetreault GR, Bennett CJ, Cheng C, Servos MR, McMaster ME (2012) Reproductive and histopathological effects in wild fish inhabiting an effluent-dominated stream, Wascana Creek, SK, Canada. Aquat Toxicol 110–111:149–161. doi:10.1016/j.aquatox.2012.01.004

    Article  Google Scholar 

  • Thophon S, Kruatrachue M, Upatham ES, Pokethitiyook P, Sahaphong S, Jaritkhuan S (2003) Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ Pollut 121(3):307–320. doi:10.1016/S0269-7491(02)00270-1

    Article  CAS  Google Scholar 

  • Triebskorn R, Adam S, Casper H, Honnen W, Pawert M, Schramm M, Schwaiger J, Köhler H-R (2002) Biomarkers as diagnostic tools for evaluating effects of unknown past water quality conditions on stream organisms. Ecotoxicology 11:451–465

    Article  CAS  Google Scholar 

  • Triebskorn R, Casper H, Scheil V, Schwaiger J (2007) Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Anal Bioanal Chem 387(4):1405–1416. doi:10.1007/s00216-006-1033-x

    Article  CAS  Google Scholar 

  • Triebskorn R, Telcean I, Casper H, Farkas A, Sandu C, Stan G, Colarescu O, Dori T, Kohler HR (2008) Monitoring pollution in River Mures, Romania, part II: metal accumulation and histopathology in fish. Environ Monit Assess 141(1–3):177–188. doi:10.1007/s10661-007-9886-9

    Article  CAS  Google Scholar 

  • Vethaak AD, Jol JG, Meijboom A, Eggens ML, Rheinallt T, Wester PW, van de Zande T, Bergman A, Dankers N, Ariese F, Baan RA, Everts JM, Opperhuizen A, Marquenie JM (1996) Skin and liver diseases induced in flounder (Platichthys flesus) after long-term exposure to contaminated sediments in large-scale mesocosms. Environ Health Perspect 104(11):1218–1229

    Article  CAS  Google Scholar 

  • Vincze K, Graf K, Scheil V, Köhler H-R, Triebskorn R (2014) Embryotoxic and proteotoxic effects of water and sediment from the Neckar River (Southern Germany) to zebrafish (Danio rerio) embryos. Environ Sci Eur 26(3):1–13

    Google Scholar 

  • Walker CH (1995) Biochemical biomarkers in ecotoxicology—some recent developments. Sci Total Environ 171(1–3):189–195. doi:10.1016/0048-9697(95)04720-6

    Article  CAS  Google Scholar 

  • Wester PW, van der Ven LTM, Vethaak AD, Grinwis GCM, Vos JG (2002) Aquatic toxicology: opportunities for enhancement through histopathology. Environ Toxicol Pharmacol 11(3–4):289–295. doi:10.1016/S1382-6689(02)00021-2

    Article  CAS  Google Scholar 

  • Wheelock C, Phillips B, Anderson B, Miller J, Miller M, Hammock B (2008) Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). In: Whitacre D (ed) Reviews of Environmental Contamination and Toxicology, vol 195. Springer, New York, pp 117–178. doi:10.1007/978-0-387-77030-7_5

    Chapter  Google Scholar 

  • Wogram J, Sturm A, Segner H, Liess M (2001) Effects of parathion on acetylcholinesterase, butyrylcholinesterase, and carboxylesterase in three-spined stickleback (Gasterosteus aculeatus) following short-term exposure. Environ Toxicol Chem 20(7):1528–1531

    Article  CAS  Google Scholar 

  • Wolz J, Engwall M, Maletz S, Olsman Takner H, van Bavel B, Kammann U, Klempt M, Weber R, Braunbeck T, Hollert H (2008) Changes in toxicity and Ah receptor agonist activity of suspended particulate matter during flood events at the rivers Neckar and Rhine—a mass balance approach using in vitro methods and chemical analysis. Environ Sci Pollut Res Int 15(7):536–553. doi:10.1007/s11356-008-0056-6

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Carl Zeiss Foundation and the Foundation of the Landesnaturschutzverband (LNV) Baden-Württemberg for their financial support. We also thank Simon Schwarz for advice on the statistics, Alexandra Scheil and Bálint Nagy for comments on the manuscript, Stefanie Krais for the introduction to the B-esterase assays, and Andreas Dieterich, Anja Henneberg, Carla Lorenz, Diana Maier, Katharina Peschke and Paul Thellmann for their assistance and help in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztina Vincze.

Additional information

Responsible editor: Cinta Porte

Appendices

Appendices

Appendix A

Table 1 Basic physicochemical features of the caging sites up- and downstream of the Tübingen STP measured in May 2012 (Vincze et al. 2014)

Appendix B

Table 2 Significance levels (p values) of Hsp70 data after comparing the different exposure groups by each organ

Appendix C

Table 3 Significant (*p < 0.05) differences between exposure groups in tissue concentration levels of various bioaccumulative organic compounds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincze, K., Scheil, V., Kuch, B. et al. Impact of wastewater on fish health: a case study at the Neckar River (Southern Germany) using biomarkers in caged brown trout as assessment tools. Environ Sci Pollut Res 22, 11822–11839 (2015). https://doi.org/10.1007/s11356-015-4398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4398-6

Keywords

Navigation