Skip to main content

Advertisement

Log in

Develop dynamic model for predicting traffic CO emissions in urban areas

  • International Conference on Integrated Management of the Environment - ICIME 2014
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The greater the use of energy in the transportation sectors, the higher the emission of carbon monoxide (CO), and hence inevitable harm to environment and human health. In this concern, measuring and predicting of CO emission from transportation sector—especially large cities—is important as it constitute 90 % of all CO emission. Many urban cities in developing world have not properly experienced such measurements or predictions. In this paper, for the first time, field measurements of traffic characteristics data and corresponding CO concentration have been performed for developing a model for predicting CO emissions from transportation sector for New Borg El Arab (NBC), Egypt. The performance of Swiss-German Handbook Emission Factors for Road Transport (HBEFA v3.1) model has been assessed for predicting the CO concentration at roadside in the study area. Results indicated that HBEFA v3.1 underestimate emission figures. The developed CO dynamic emission model involves the traffic flow characteristics with roadside CO concentrations. Acceptable representation of measured CO concentration has been shown by the developed dynamic CO emission model which introduces R 2 = 0.77, mean biases and frictional biases of −0.27 mg m−3 and 0.09, respectively. A comparison between predicted CO concentrations using HBEFA v3.1 and the promoted dynamic model indicate that HBEFA v3.1 estimates CO emission concentrations in the study area with a mean error and frictional biases 159.26 and 233.33 %, respectively, higher than those of the developed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anilovich I, Hakkert AS (1996) Survey of vehicle emissions in Israel related to vehicle age and periodic inspection. The Science of the Total Environment; 189(190):197–203. doi:10.1016/0048-9697(96)05210-2

    Article  Google Scholar 

  • Åsa Hedman, PekkaTuominen, Carmen Antuٌa Rozado, JuttaJantunen, Ahmed ElShazly, Ahmad Hamza, Ali Kamel, AbdelazimNegm, Ahmed Tawfik, Heba Saeed, Mona GamalEldin, Ola Balbaa, Yehia ElMahgary, Mohamed Shahin, Ali El-Nashar, Boshra Salem Walaa Youssef (2014) Readiness for EcoCities in Egypt: insights into the current state of EcoCity systems, technologies and concepts. VTT Technical Research Centre of Finland. ISBN 978-951-38-978-951-38-8136-8. http://www.vtt.fi/publications/index.jsp. Accessed 22 Mar 2014

  • Barbara Z, Sagebiel J, McDonald JD, Whitney K, Lawson DR (2004) Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles. Journal of the Air & Waste Management Association 54(9):1138–1150. doi:10.1080/10473289.2004.10470973

    Article  Google Scholar 

  • Borge R, De Miguel I, de la Paz D, Lumbreras J, Pérez J, Rodríguez E (2012) Comparison of road traffic emission models in Madrid (Spain). Atmospheric Environment 62:461–471. doi:10.1016/j.atmosenv.2012.08.073, Accessed 19 May 2014

    Article  CAS  Google Scholar 

  • Colberg CA, Tona B, Catone G, San Giorgio C, Stahel WA, Sturm P, Staehelin J (2005) Statistical analysis of the vehicle pollutant emissions derived from several European road tunnel studies. Atmospheric Environment 39:2499–2511. doi:10.1016/j.bbr.2011.03.031

    Article  CAS  Google Scholar 

  • Dubey B, Pal AK, Singh G (2013) Assessment Of Vehicular Pollution In Dhanbad City Using Caline 4 Model. International Journal of Geology, Earth and Environmental Sciences ISSN: 2277–2081. Vol. 3 (1) January-April pp.156-164. bit.ly/1hXX9hE. Accessed 18 Jan 2014

  • Elkafoury A, Negm A, Hafez M, Bady M, Ichimurac T (2014a) Operational and environmental evaluation of traffic movement on urban streets using GPS floating-car data. International Journal of Engineering & Technology 4(1):20–25. doi:10.14419/ijet.v4i1.3794

    Article  Google Scholar 

  • Elkafoury A, Negm AM, BadyM, Aly MH F (2014) Review of transport emission modeling and monitoring in urban areas—challenge for developing countries. In: Advanced Logistics and Transport (ICALT), 2014 International Conference on (pp. 23–28). IEEE. doi:10.1109/ICAdLT.2014.6864076

  • Faiz A, Sturm PJ (2002) New directions: air pollution and road traffic in developing countries. Developments in Environmental Science volume 1:241–243. doi:10.1016/S1474-8177(02)80010-9

    Article  Google Scholar 

  • Gordon M, Staebler RM, Liggio J, Li SM, Wentzell J, Lu G, Brook JR (2012) Measured and modeled variation in pollutant concentration near roadways. Atmospheric Environment 57:138–145. doi:10.1016/j.atmosenv.2012.04.022

    Article  CAS  Google Scholar 

  • Han X, Jiang S, Liang B (2013) A study on the model of traffic flow and vehicle exhaust emission. Mathematical Problems in Engineering. Article ID 736285, 6 pages. doi:10.1155/2013/736285

  • IEA (2006). World Energy Outlook. International Energy Agency, Paris, 596pp. http://www.iea.org/publications/freepublications/publication/name,3650,en.html. Accessed 19 May 2014

  • INFRAS (2010) Handbook Emission Factors for Road Transport. Tech. rep. HBEFA 3.1. http://www.hbefa.net/e/documents/HBEFA_31_Docu_hot_emissionfactors_PC_LCV_HDV.pdf. Accessed 19 May 2014

  • Joeng L, Hayes A, Bakand S (2013) Validation of the dynamic direct exposure method for toxicity testing of diesel exhaust in vitro. ISRN toxicology. http://dx.doi.org/10.1155/2013/139512

  • Karl R, Joe Beebe H, Li BD, Tate J, Bell M, Andrews G (2009) Real-world vehicle exhaust emissions monitoring: review and critical discussion. Critical Reviews in Environmental Science and Technology 39(2):79–152. doi:10.1080/10643380701413377

    Article  Google Scholar 

  • McKinsey Global Insights (2010) Egypt GHG emissions reduction strategy; End product Phase 2. bit.ly/R0Kraz. Accessed 19 May 2014

  • Misra A, Roorda MJ, MacLean HL (2013) An integrated modelling approach to estimate urban traffic emissions. Atmospheric Environment 73:81–91. doi:10.1016/j.atmosenv.2013.03.013

    Article  CAS  Google Scholar 

  • Mukherjee P, Viswanathan S (2001) Carbon monoxide modeling from transportation sources. Chemosphere 45(6):1071–1083. doi:10.1016/S0045-6535(01)00128-X

    Article  CAS  Google Scholar 

  • Nagendra S, Khare M (2002) Line source emission modelling a review. Atmospheric Environment 36:2083–2098. doi:10.1016/S1352-2310(02)00177-2

    Article  CAS  Google Scholar 

  • Ngo TH, Ketzel M, Jensen SS, Oanh NTK (2010) Air pollution modeling at road sides using the operational street pollution model—a case study in Hanoi, Vietnam. Journal of the Air &Waste Management Association 60(11):1315–1326. doi:10.3155/1047-3289.60.11.1315

    Article  Google Scholar 

  • D Nicole, Lents J, Osses M, Nikkila N, Barth M (2005) Development and application of an international vehicle emissions model. Transportation Research Record: J Transportation Res Board; Volume 1939/2005 Bicycles and Pedestrians; Developing Countries. doi:10.3141/1939-18

  • Nigel NC, Kern JM, Atkinson CM, Nine RD (2002) Factors affecting heavy-duty diesel vehicle emissions. Journal of the Air & Waste Management Association 52(1):84–94. doi:10.1080/10473289.2002.10470755

    Article  Google Scholar 

  • Panis LI, Broekx S, Liu R (2006) Modelling instantaneous traffic emission and the influence of traffic speed limits. Science of the Total Environment 371:270–285. doi:10.1016/j.scitotenv.2006.08.017

    Article  CAS  Google Scholar 

  • Raducan G, Stefanescu I (2012) A qualitative study of air pollutants from road traffic. In: Dr. Sunil Kumar (ed) Air quality–monitoring and modeling, pp 19–35

  • Sharma N, Chaudhry KK, Chalapati Rao CV (2004) Vehicular pollution prediction modelling: a review of highway dispersion models. Transport Reviews: A Transnational Transdisciplinary Journal 24(4):409–435. doi:10.1080/0144164042000196071

    Article  Google Scholar 

  • Siamak AA, Sumitsawan P (2010) Effect of pavement type on fuel consumption and emissions in city driving. University of Texas. Final research report, submitted to the ready mixed concrete research & education foundation. bit.ly/Sbldaz. Accessed 19 May 2014

  • Sjödin Å, Jerksjö M (2008) Evaluation of European road transport emission models against on-road emission data as measured by optical remote sensing. Proceedings of the 16th International Transport and Air Pollution Congress, held June 2008, Graz, Austria. http://trid.trb.org/view.aspx?id=1084597. Accessed 19 May 2014

  • Smit R, Smokers R, ElkeRabe (2007) A new modelling approach for road traffic emissions: VERSIT+. Transportation Research Part D 12:414–422. doi:10.1016/j.trd.2007.05.001

    Article  Google Scholar 

  • Sullivan JL, Baker RE, Boyer BA, Hammerle RH, KenneyTE, Muniz L, Wallington TJ (2004) CO2 Emission benefit of diesel (versus gasoline) powered vehicles. Environ Sci Technol 38:(12) doi:10.1021/es034928d

  • Suresh P, Gokhale S, Ghoshal AK (2009) Evaluating effects of traffic and vehicle characteristics on vehicular emissions near traffic intersections. Transportation Research Part D 14:180–196. doi:10.1016/j.trd.2008.12.001

    Article  Google Scholar 

  • Thermo Electron Corporation (2010) MIRAN SapphIRe gas analyzers for anesthetic agent detection. www.thermo.com.

  • Transportation Research Board (TRB) (2000) Highway Capacity Manual (HCM), fourth ed. Transportation Research Board, National Research Council, Washington, DC. http://hcm.trb.org

Download references

Acknowledgments

The first author would like to thank Egyptian Ministry of Higher Education (MoHE) for providing him the financial support (PhD scholarship) for this research, as well as Egypt-Japan University of Science and Technology (E-JUST) for offering the facility and tools needed to conduct this work.

Conflict of interest

The authors also ensure that there is no potential conflict of interest of the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Elkafoury.

Additional information

Responsible editor: Michael Matthies

Appendix

Appendix

$$ \mathrm{R}\mathrm{e} lative\; error\; in\; the\; average\; concentration=\frac{\overline{C_p}-\overline{C_m}}{\overline{C_m}}\ast 100 $$
$$ Global\; mean\; biases\;(MB)=\overline{C_p}-{C}_m $$
$$ Frictional\; Biases\;(FB)=2\left(\frac{\overline{C_m}-\overline{C_p}}{\overline{C_m}+\overline{C_p}}\right) $$
$$ Geometrical\; mean\;(MG)\; bias= \exp \left(\overline{1n{C}_m}-\overline{1n{C}_p}\right) $$
$$ Root\; mean\; square\; error\;(RMSE)=\sqrt{\frac{{\left({C}_p-{C}_m\right)}^2}{N-1}} $$
$$ Normalized\; mean\; square\; error\;(NMSE)=\frac{\overline{{\left({C}_p-{C}_m\right)}^2}}{\overline{C_p}\ast \overline{C_m}} $$

where C p is the predicted (modeled) CO concentration (mg m−3), C m is the measured (monitored) CO concentration (mg m−3), and N is the number of observations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkafoury, A., Negm, A.M., Aly, M.H. et al. Develop dynamic model for predicting traffic CO emissions in urban areas. Environ Sci Pollut Res 23, 15899–15910 (2016). https://doi.org/10.1007/s11356-015-4319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4319-8

Keywords

Navigation