Skip to main content
Log in

Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms

  • DECAPAGE Project: Hydrocarbon degradation in coastal sediments*
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mudflats are ecologically important habitats that are susceptible to oil pollution, but intervention is difficult in these fine-grained sediments, and so clean-up usually relies on natural attenuation. Therefore, we investigated the impact of crude oil on the bacterial, diatom and archaeal communities within the upper parts of the diatom-dominated sediment and the biofilm that detached from the surface at high tide. Biodegradation of petroleum hydrocarbons was rapid, with a 50 % decrease in concentration in the 0–2-mm section of sediment by 3 days, indicating the presence of a primed hydrocarbon-degrading community. The biggest oil-induced change was in the biofilm that detached from the sediment, with increased relative abundance of several types of diatom and of the obligately hydrocarbonoclastic Oleibacter sp., which constituted 5 % of the pyrosequences in the oiled floating biofilm on day 3 compared to 0.6 % in the non-oiled biofilm. Differences in bacterial community composition between oiled and non-oiled samples from the 0–2-mm section of sediment were only significant at days 12 to 28, and the 2–4-mm-sediment bacterial communities were not significantly affected by oil. However, specific members of the Chromatiales were detected (1 % of sequences in the 2–4-mm section) only in the oiled sediment, supporting other work that implicates them in anaerobic hydrocarbon degradation. Unlike the Bacteria, the archaeal communities were not significantly affected by oil. In fact, changes in community composition over time, perhaps caused by decreased nutrient concentration and changes in grazing pressure, overshadowed the effect of oil for both Bacteria and Archaea. Many obligate hydrocarbonoclastic and generalist oil-degrading bacteria were isolated, and there was little correspondence between the isolates and the main taxa detected by pyrosequencing of sediment-extracted DNA, except for Alcanivorax, Thalassolituus, Cycloclasticus and Roseobacter spp., which were detected by both methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abed RMM (2010) Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons. Int Biodeter Biodegr 64:58–64

    Article  CAS  Google Scholar 

  • Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684

    Article  CAS  Google Scholar 

  • An D, Brown D, Chatterjee I, Dong X, Ramos-Padron E, Wilson S, Bordenave S, Caffrey SM, Gieg LM, Sensen CW, Voordouw G (2013) Microbial community and potential functional gene diversity involved in anaerobic hydrocarbon degradation and methanogenesis in an oil sands tailings pond. Genome 56:612–618

    Article  CAS  Google Scholar 

  • Anderson MS, Hall RA, Griffin M (1980) Microbial metabolism of alicyclic hydrocarbons: cyclohexane catabolism by a pure strain of Pseudomonas sp. J Gen Microbiol 120:89–94

    CAS  Google Scholar 

  • Berardesco G, Dyhrman S, Gallagher E, Shiaris MP (1998) Spatial and temporal variation of phenanthrene-degrading bacteria in intertidal sediments. Appl Environ Microbiol 64:2560–2565

    CAS  Google Scholar 

  • Bernhard AE, Landry ZC, Blevins A, de la Torré JR, Giblin AE et al (2010) Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl Environ Microbiol 76:1285–1289

    Article  CAS  Google Scholar 

  • Bordenave S, Goni-Urriza MS, Caumette P, Duran R (2007) Effects of heavy fuel oil on the Bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73:6089–6097

    Article  CAS  Google Scholar 

  • Brakstad OG, Lodeng AG (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49:94–103

    Article  CAS  Google Scholar 

  • Capello S, Yakimov MM (2010) Alcanivorax. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1738–1748

    Google Scholar 

  • Chronopoulou P-M, Sanni GO, Silas-Olu DI, Van der Meer JR, Timmis KN, Brussaard CPD, McGenity TJ (2014) Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea. Microb Biotechnol. doi:10.1111/1751-791512176

    Google Scholar 

  • Chronoupolou P-M, Fahy A, Coulon F, Paissé S, Goñi-Urriza MS, Peperzak L, Acuña-Alvarez L, McKew BA, Lawson T, Timmis KN, Duran R, Underwood GJC, McGenity TJ (2013) Impact of a simulated oil spill on benthic phototrophs and nitrogen-fixing bacteria. Environ Microbiol 15:241–252

    Google Scholar 

  • Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186

    Article  CAS  Google Scholar 

  • Coulon F, Chronopoulou P, Fahy A, Païssé S, Goñi-Urriza M, Peperzak L, Acuña-Alvarez L, McKew BA, Brussaard CPD, Underwood GJC, Van der Meer JR, Timmis KN, Duran R, McGenity TJ (2012) Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol 78:3638–3648

    Article  CAS  Google Scholar 

  • Cui Z, Lai Q, Dong C, Shao Z (2008) Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol 10:2138–2149

    Article  CAS  Google Scholar 

  • Deppe U, Richnow HH, Michaelis W, Antranikian G (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9:461–470

  • Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen nov, sp nov, an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Evol Microbiol 45:116–123

    CAS  Google Scholar 

  • Fahy A, McGenity TJ, Timmis KN, Ball AS (2006) Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol Ecol 58:260–270

    Article  CAS  Google Scholar 

  • Felsenstein J (2009) PHYLIP (Phytogeny Inference Package) version 3.69. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436

    Article  CAS  Google Scholar 

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233

    Article  CAS  Google Scholar 

  • Foster KR, Bell T (2012) Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol 22:1845–1850

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9–17

    Google Scholar 

  • Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K (2007) Characterization of diverse hydrocarbon-degrading bacteria isolated from Indonesian seawater. Microbes Environ 22:412–415

    Article  Google Scholar 

  • Head IM, Jones DM, Rőling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  Google Scholar 

  • Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, Williams KH, Tringe SG, Banfield JF (2013) Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1:22–38

    Article  Google Scholar 

  • Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002a) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–147

    Article  CAS  Google Scholar 

  • Kasai Y, Kishira H, Harayama S (2002b) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633

    Article  CAS  Google Scholar 

  • Kodama Y, Stiknowati LI, Ueki A, Ueki K, Watanabe K (2008) Thalassospira tepidiphila sp nov, a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater. Int J Syst Evol Microbiol 58:711–715

    Article  CAS  Google Scholar 

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Lanfranconi MP, Bosch R, Nogales B (2010) Short-term changes in the composition of active marine bacterial assemblages in response to diesel oil pollution. Microb Biotechnol 3:607–621

    Article  CAS  Google Scholar 

  • Li M, Cao H, Hong Y, Gu JD (2011) Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Appl Microbiol Biotechnol 89:1243–1254

    Article  CAS  Google Scholar 

  • Li Q, Wang F, Chen Z, Yin X, Xiao X (2012) Stratified active archaeal communities in the sediments of Jiulong River estuary China. Front Microbiol 3:311–314

    Google Scholar 

  • Li J, Nedwell DB, Beddow J, Dumbrell AJ, McKew BA, Thorpe EL, Whitby C (2014) amoA gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria (AOB) not archaea (AOA) dominate N cycling in the Colne estuary, UK. Appl Environ Microbiol. doi:10.1128/AEM.02654-14

    Google Scholar 

  • Liu Z, Liu J (2013) Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. MicrobiologyOpen 2:492–504

    Article  CAS  Google Scholar 

  • Liu R, Zhang Y, Ding R, Li D, Gao Y, Yang M (2009) Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. J Biosci Bioeng 108:400–407

    Article  CAS  Google Scholar 

  • Lloyd K, Schreiber GL, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, Stepanauskas R, Richter M, Kleindienst S, Lenk S, Schramm A, Jørgensen BB (2013) Predominant archaea in marine sediments degrade detrital proteins. Nature 496:215–220

    Article  CAS  Google Scholar 

  • Lopez GR, Levinton JS (1978) The availability of microorganisms attached to sediment particles as food for Hydrobia ventrosa Montagu (Gastropoda: Prosobranchia). Oecologia 32:263–275

    Article  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Dymock D, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  Google Scholar 

  • McGenity TJ (2014) Hydrocarbon biodegradation in intertidal wetland sediments. Curr Opin Biotechnol 27:46–54

    Article  CAS  Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10–28

    Article  Google Scholar 

  • McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007a) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9:165–176

    Article  CAS  Google Scholar 

  • McKew BA, Coulon F, Yakimov MM, Denaro R, Genovese M, Smith CJ, Osborn AM, Timmis KN, McGenity TJ (2007b) Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic Bacteria. Environ Microbiol 9:1562–1571

    Article  CAS  Google Scholar 

  • McKew BA, Taylor JD, McGenity TJ, Underwood GJC (2011) Resistance and resilience of benthic biofilm communities from a temperate saltmarsh to desiccation and rewetting. ISME J 5:30–41

    Article  Google Scholar 

  • Meng J, Xu J, Qin D, He Y, Xiao X, Wang F (2014) Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8:650–659

    Article  CAS  Google Scholar 

  • Michel J, Owens EH, Zengel S, Graham A, Nixon Z, Allard T, Holton W, Reimer PD, Lamarche A, White M, Rutherford N, Childs C, Mauseth G, Challenger G, Taylor E (2013) Extent and degree of shoreline oiling: Deepwater Horizon oil spill, Gulf of Mexico. USA PLoS ONE 8:e65087

    Article  CAS  Google Scholar 

  • Miralles G, Nerini D, Mante C, Acquaviva M, Doumenq P, Michotey V, Nazaret S, Bertrand JC, Cuny P (2007) Effects of spilled oil on bacterial communities of Mediterranean coastal anoxic sediments chronically subjected to oil hydrocarbon contamination. Microb Ecol 54:646–661

    Article  CAS  Google Scholar 

  • Mortazavi B, Horel A, Beazley MJ, Sobecky PA (2013) Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates. J Hazard Mater 244–245:537–544

    Article  Google Scholar 

  • Munson MA, Nedwell DB, Embley TM (1997) Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl Environ Microbiol 63:4729–4733

  • Niepceron M, Portet-Koltalo F, Merlin C, Motelay-Massei A, Barray S, Bodilis J (2010) Both Cycloclasticus spp and Pseudomonas spp as PAH-degrading bacteria in the Seine estuary (France). FEMS Microbiol Ecol 71:137–147

    Article  CAS  Google Scholar 

  • Nogales B, Aguilo-Ferretjans MM, Martin-Cardona C, Lalucat J, Bosch R (2007) Bacterial diversity, composition and dynamics in and around recreational coastal areas. Environ Microbiol 9:1913–1929

    Article  CAS  Google Scholar 

  • Païssé S, Goni-Urriza M, Coulon F, Duran R (2010) How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb Ecol 60:394–405

    Article  Google Scholar 

  • Prabagaran SR, Manorama R, Delille D, Shivaji S (2007) Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiol Ecol 59:342–355

    Article  CAS  Google Scholar 

  • Prince RC (2010) Eukaryotic hydrocarbon degraders. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2066–2076

    Google Scholar 

  • Prince RC, Lessard RR, Clark JR (2003) Bioremediation of marine oil spills. Oil Gas Sci Technol 58:463–468

    Article  CAS  Google Scholar 

  • Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD, Timmis KN, Embley TM (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595

    Article  CAS  Google Scholar 

  • Reddy CM, Eglinton TI, Hounshell A, White HK, Xu L, Gaines RB, Frysinger GS (2002) The West Falmouth oil spill after thirty years: the persistence of petroleum hydrocarbons in marsh sediments. Environ Sci Technol 36:4754–4760

    Article  CAS  Google Scholar 

  • Rőling WF, De Brito Couto IR, Swannell RP, Head IM (2004) Response of archaeal communities in beach sediments to spilled oil and bioremediation. Appl Environ Microbiol 70:2614–2620

    Article  Google Scholar 

  • Scott NM, Hess M, Bouskill NJ, Mason OU, Jansson JK, Gilbert JA (2014) The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments. Front Microbiol 5:108–115

    Google Scholar 

  • Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y (2003) Anaerolinea thermophila gen nov, sp nov and Caldilinea aerophila gen nov, sp nov, novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:1843–1851

    Article  CAS  Google Scholar 

  • Seyler LM, McGuinness LM, Kerkhof LJ (2014) Crenarchaeal heterotrophy in salt marsh sediments. ISME J 8:1534–1543

    Article  CAS  Google Scholar 

  • Sherry A, Gray ND, Ditchfield AK, Aitken CM, Jones DM, Röling WFM, Hallmann C, Larter SR, Bowler BFJ, Head IM (2013) Anaerobic biodegradation of crude oil under sulphate-reducing conditions leads to only modest enrichment of recognized sulphate-reducing taxa. Int Biodeter Biodegr 81:105–113

    Article  CAS  Google Scholar 

  • Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–380

    Article  CAS  Google Scholar 

  • Stauffert M, Cravo-Laureau C, Jézéquel R, Barantal S, Cuny P, Gilbert F, Cagnon C, Militon C, Amouroux D, Mahdaoui F, Bouyssiere B, Stora G, Merlin FX, Duran R (2013) Impact of oil on bacterial community structure in bioturbated sediments. PLoS ONE 8:e65347

    Article  CAS  Google Scholar 

  • Stauffert M, Duran R, Gassie C, Cravo-Laureau C (2014) Response of archaeal communities to oil spill in bioturbated mudflat sediments. Microb Ecol 67:108–119

    Article  CAS  Google Scholar 

  • Sutton NB, Maphosa F, Morillo JA, Abu Al-Soud W, Langenhoff AA, Grotenhuis T, Rijnaarts HH, Smidt H (2013) Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79:619–630

    Article  CAS  Google Scholar 

  • Taketani RG, Franco NO, Rosado AS, Van Elsas JD (2010) Microbial community response to a simulated hydrocarbon spill in mangrove sediments. J Microbiol 48:7–15

    Article  Google Scholar 

  • Teira E, Lekunberri I, Gasol JM, Nieto-Cid M, Alvarez-Salgado XA, Figueiras FG (2007) Dynamics of the hydrocarbon-degrading Cycloclasticus bacteria during mesocosm-simulated oil spills. Environ Microbiol 9:2551–2562

    Article  CAS  Google Scholar 

  • Teramoto M, Suzuki M, Okazaki F, Hatmanti A, Harayama S (2009) Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment. Microbiology 155:3362–3370

    Article  CAS  Google Scholar 

  • Teramoto M, Ohuchi M, Hatmanti A, Darmayati Y, Widyastuti Y, Harayama S, Fukunaga Y (2011) Oleibacter marinus gen nov, sp nov, a bacterium that degrades petroleum aliphatic hydrocarbons in a tropical marine environment. Int J Syst Evol Microbiol 61:375–380

    Article  CAS  Google Scholar 

  • Teramoto M, Queck SY, Ohnishi K (2013) Specialized hydrocarbonoclastic bacteria prevailing in seawater around a port in the Strait of Malacca. PLoS ONE 8:e66594

    Article  CAS  Google Scholar 

  • Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Gurvan M (2011) Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2:93–108

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Thornton DCO, Dong LF, Underwood GJC, Nedwell DB (2002) Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK). Aquat Microb Ecol 27:285–300

    Article  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  Google Scholar 

  • Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801

    Article  CAS  Google Scholar 

  • Yakimov MM, Denaro R, Genovese M, Cappello S, D'Auria G, Chernikova TN, Timmis KN, Golyshin PN, Giuliano L (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7:1426–1441

    Article  CAS  Google Scholar 

  • Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp nov, Levilinea saccharolytica gen nov, sp nov and Leptolinea tardivitalis gen nov, sp nov, novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov and Caldilineae classis nov in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340

    Article  CAS  Google Scholar 

  • Yang S, Wen X, Zhao L, Shi Y, Jin H (2014) Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route. PLoS ONE 9:e96552

    Article  Google Scholar 

Download references

Acknowledgments

We thank Anne Fahy and Farid Benyahia for technical advice and assistance, and Boyd McKew for his assistance in designing the mesocosms. We also acknowledge John Green for helping to set up the mesocosms. We are grateful for PhD scholarship funds for GOS from the Petroleum Technology Development Fund (PTDF), Nigeria.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry J. McGenity.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 647 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanni, G.O., Coulon, F. & McGenity, T.J. Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms. Environ Sci Pollut Res 22, 15230–15247 (2015). https://doi.org/10.1007/s11356-015-4313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4313-1

Keywords

Navigation