Skip to main content

Advertisement

Log in

Surfactants in atmospheric aerosols and rainwater around lake ecosystem

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F, Cl, NO3 , and SO4 2−) and the Nessler Method was used to obtain the NH4 + concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93 %) and biomass burning (2 to 22 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almeida CMR, Dias AC, Mucha AP, Borda AA, Vasconcelos MTSD (2009) Influence of surfactants on the Cu phytoremediation potential of a salt marsh plant. Chemosphere 75:135–140

    Article  CAS  Google Scholar 

  • Andrea MO, Crutzen PJ (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276:1052–1058

    Article  Google Scholar 

  • Asa-Awuku A, Sullivan AP, Hennigan CJ, Weber RJ, Nenes A (2008) Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol. Atmos Chem Phys 8:799–812

    Article  CAS  Google Scholar 

  • Boulanger B, Vargo J, Schnoor JL, Hornbuckle KC (2004) Detection of perfluorooctane surfactants in Great Lakes water. Environ Sci Technol 38:4064–4070

    Article  CAS  Google Scholar 

  • Cane F, Hoxha B, Avdolli M (2010) Water quality in Carstic Lake, Albania. Natura Montenegrina Podgorica 9:349–355

    Google Scholar 

  • Chatterjee S, Hadi AS, Price B (eds) (1999) Regression analysis by example. Wiley, New York

    Google Scholar 

  • Chitikela S, Dentel SK, Allen HE (1995) Modified method for the analysis of anionic surfactants as methylene blue active substances. Analyst 120:2001–2004

    Article  CAS  Google Scholar 

  • Cho H-H, Choi J, Goltz MN, Park JW (2002) Combined effect of natural organic matter and surfactants on the apparent solubility of polycyclic aromatic hydrocarbons. J Environ Qual 31:275–280

    Article  Google Scholar 

  • Coelho FJRC, Sousa S, Santos L, Santos AL, Almeida A, Gomes NCM, Cunha  (2011) Exploring hydrocarbonoclastic bacterial communities in the estuarine surface microlayer. Aquat Microb Ecol 64:185–195

    Article  Google Scholar 

  • Comber MH, Williams TD, Stewart KM (1993) The effect of nonylphenol on Daphnia magna. Water Res 27:273–276

    Article  CAS  Google Scholar 

  • Cozic J, Verheggen B, Weingartner E, Crosier J, Bower KN, Flynn M, Coen H, Henning S, Steinbacher M, Henne S, Coen MC, Petzold A, Baltensperger U (2008) Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmos Chem Phys 8:407–423

    Article  CAS  Google Scholar 

  • Dominick D, Juahir H, Latif MT, Zain SM, Aris AZ (2012) Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmos Environ 60:172–181

    Article  CAS  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397

    Article  Google Scholar 

  • Fang M, Zheng M, Wang F, To KL, Jaafar AB, Tong SL (1999) The solvent extractable organic compounds in the Indonesian biomass burning aerosols characterization studies. Atmos Environ 33:783–795

    Article  CAS  Google Scholar 

  • Haitzer M, Höss S, Traunspurger W, Steinberg C (1998) Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms: a review. Chemosphere 37:1335–1362

    Article  CAS  Google Scholar 

  • Hanif NM, Latif MT, Ali MM, Othman MR (2009) Atmospheric surfactants around lake ecosystems. Euro J Sci Res 32:268–276

    Google Scholar 

  • He K, Yang F, Ma Y, Zhang Q, Yao X, Chan CK, Cadle S, Chan T, Mulawa P (2001) The characteristics of PM2.5 in Beijing. China. Atmos Environ 35:4959–4970

    Article  CAS  Google Scholar 

  • Ivanković T, Hrenović J (2010) Surfactants in the environment. Arh Hig Rada Toxicol 61:95–110

    Google Scholar 

  • Klavins M, Purmalis O (2010) Humic substances as surfactants. Environ Chem Lett 8:349–354

    Article  CAS  Google Scholar 

  • Koopal LK, Goloub TP, Davis TA (2004) Binding of ionic surfactants to purified humic acid. J Colloid Interface Sci 275:360–367

    Article  CAS  Google Scholar 

  • Krivacsy Z, Kiss G, Ceburnis D, Jennings G, Maenhaut W, Salma I, Shooter D (2008) Study of water-soluble atmospheric humic matter in urban and marine environments. Atmos Res 87:1–12

    Article  CAS  Google Scholar 

  • Latif MT, Brimblecombe P (2004) Surfactants in atmospheric aerosols. Environ Sci Technol 38:6501–6506

    Article  CAS  Google Scholar 

  • Latif MT, Brimblecombe P, Ramli NA, Sentian J, Sukhapan J, Sulaiman N (2005) Surfactants in South East Asian aerosols. Environ Chem 2:198–204

    Article  CAS  Google Scholar 

  • Latif MT, Rozali MO (1999) Dust fall at Ayer Keroh (Melaka) and Teluk Kalung (Terengganu) industrial areas. Malays J Anal Sci 5:137–146

    Google Scholar 

  • Latif MT, Wanfi L, Hanif NM, Roslan RN, Ali MM, Mushrifah I (2012) Composition and distribution of surfactants around Lake Chini, Malaysia. Environ Monit Assess 184:1325–1334

    Article  CAS  Google Scholar 

  • Lawson JR, Winchester JW (1979) Sulfur and trace element concentration relationship in aerosols from the South American continent. Geophys Res Lett 5:195–198

    Article  Google Scholar 

  • Liu W, Hopke PK, Han Y, Yi S-M, Holsen TM, Cybart S, Koslowski K, Milligan M (2003) Application of receptor modelling to atmospheric constituents at Potsdam and Stockton, NY. Atmos Environ 37:4997–5007

    Article  CAS  Google Scholar 

  • Mansha M, Ghauri B, Rahman S, Amman A (2012) Characterization and source apportionment of ambient air particulate matter (PM2.5). Sci Total Environ 425:176–183

    Article  CAS  Google Scholar 

  • Mohamed M, Suleiman MFS, Khan N (1994) Environmental impacts of developing a resort on a tropical lake—the Tasik Chini Story. In International Symposium on Ecology and Engineering. Taman Negara Resort, Malaysia

  • Norela S, Maimon A, Rozali MO (2006) kepekatan plumbum, kadmium, nitrat dan ammonium di udara. Malay J Anal Sci 10:109–114

    Google Scholar 

  • Norusis MJ (ed) (1990) SPSS base system user’s guide. SPSS, Chicago

    Google Scholar 

  • Olkowska E, Ruman M, Polkowska Z (2014) Occurrence of surface active agents in the environment. J Anal Method Chem 1–16

  • Oppo C, Bellandi S, Innocenti ND, Stortini AM, Loglio G, Schiavuta E, Cini R (1999) Surfactant components of marine organic matter as agents for biogeochemical fractionation and pollutant transport via marine aerosols. Mar Chem 63:235–253

    Article  CAS  Google Scholar 

  • Othman M, Latif MT (2013) Dust and gas emission from small-scale peat combustion. Aerosol Air Qual Res 13:1045–1059

    CAS  Google Scholar 

  • Pavlić Ž, Vidaković-Cifrek Ž, Puntarić D (2005) Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum. Chemosphere 61:1061–1068

    Article  Google Scholar 

  • Pentamwa P, Oanh NTK (2008) Air quality in southern Thailand during haze episode in relation to air mass trajectory. Songklanakarin J Sci Technol 30:539–546

    Google Scholar 

  • Razak IS, Tan ZZ, Nor ZM, Wahid NBA, Mushrifah I, Latif MT (2013) Correlation between surfactants and heavy metals in a natural lake. Environ Forensics 14:59–68

  • Roslan RN, Hanif NM, Othman MR, Azmi WNFW, Yan XX, Ali MM (2010) Surfactants in the sea-surface microlayer and their contribution to atmospheric aerosols around coastal areas of the Malaysian Peninsula. Mar Pollut Bull 60:1584–1590

    Article  CAS  Google Scholar 

  • Saxena P, Hildemann L (1996) Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J Atmos Chem 24:57–109

    Article  CAS  Google Scholar 

  • Sharip Z, Jusoh J (2010) Integrated lake basin management and its importance for Lake Chini and others in Malaysia. Lakes Reserv Res Manag 15:41–51

    Article  Google Scholar 

  • Shi G-L, Zeng F, Li X, Feng Y-C, Wang Y-Q, Liu G-X, Zhu T (2011) Estimated contributions and uncertainties of PCA/MLReCMB results: source apportionment for synthetic and ambient datasets. Atmos Environ 45:2811–2819

    Article  CAS  Google Scholar 

  • Shuhaimi-Othman M, Lim EC, Idris M (2007) Water quality changes in Chini Lake Pahang, West Malaysia. Environ Monit Assess 131:279–292

    Article  CAS  Google Scholar 

  • Srivastava A, Gupta S, Jain VK (2008) Source apportionment of total suspended particulate matter in coarse and fine ranges over Delhi. Aero Air Qual Res 8:188–200

    CAS  Google Scholar 

  • Statheropoulos M, Vassilliadis N, Pappa A (1998) Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmos Environ 32:1087–1095

    Article  CAS  Google Scholar 

  • Tsitouridou R, Voutsa D, Kouimtzis T (2003) Ionic composition of PM10 in the area of Thessaloniki, Greece. Chemosphere 52:883–891

    Article  CAS  Google Scholar 

  • Viana M, Kuhlbusch TAJ, Querola X, Alastueya A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévôt ASH, Hueglin C, Bloemen H, Wåhlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849

    Article  CAS  Google Scholar 

  • Wahid NBA, Latif MT, Suratman S (2013) Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia. Chemosphere 91:1508–1516

    Article  CAS  Google Scholar 

  • Warne MSJ, Schifko AD (1999) Toxicity of laundry detergent components to a freshwater cladoceran and their contribution to detergent toxicity. Ecotoxicol Environ Saf 44:196–206

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic, USA

    Google Scholar 

  • Williams J (2004) Organic trace gases in the atmosphere: an overview. Environ Chem 1:125–136

    Article  CAS  Google Scholar 

  • Yao XH, Chan CK, Fang M, Cadle S, Chan T, Mulawa P, He K, Ye B (2002) The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos Environ 36:4223–4234

    Article  CAS  Google Scholar 

  • Yuan CS, Lee CG, Liu SH, Chang JC, Yuan C, Yang HY (2006) Correlation of atmospheric visibility with chemical composition of Kaohsiung aerosols. Atmos Res 82:663–679

    Article  CAS  Google Scholar 

  • Zhang MY, Wang SJ, Wu FC, Yuan XH, Zhang Y (2007) Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos Res 84:311–322

    Article  CAS  Google Scholar 

  • Zhao Y, Yang ZF, Li YX (2010) Investigation of water pollution in Baiyangdian Lake, China. Procedia Environ Sci 737–748

  • Zimmer AT, Baron PA, Biswas P (2002) The influence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process. J Aerosol Sci 33:519–531

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Malaysian Ministry of Higher Education for funding via Fundamental Research Grants (UKMTOPDOWN-ST-08-FRGS0003-2010 and FRGS/1/2013/SPWN01/UKM/02/) and Universiti Kebangsaan Malaysia for University Research Grant (DIP-2014-005). Special thanks to Dr. Rose Norman for the assistance with the proofreading of this manuscript and Pusat Penyelidikan Tasik Chini (PPTC) for the research funding with the valuable information and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Talib Latif.

Additional information

Responsible editor: Constantini Samara

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razak, I.S., Latif, M.T., Jaafar, S.A. et al. Surfactants in atmospheric aerosols and rainwater around lake ecosystem. Environ Sci Pollut Res 22, 6024–6033 (2015). https://doi.org/10.1007/s11356-014-3781-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3781-z

Keywords

Navigation