Skip to main content

Advertisement

Log in

Assessment of the ecotoxicological risk of combined sewer overflows for an aquatic system using a coupled “substance and bioassay” approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Very few tools are available for assessing the impact of combined sewer overflows (CSOs) on receiving aquatic environments. The main goal of the study was to assess the ecotoxicological risk of CSOs for a surface aquatic ecosystem using a coupled “substance and bioassay” approach. Wastewater samples from the city of Longueuil, Canada CSO were collected for various rainfall events during one summer season and analyzed for a large panel of substances (n = 116). Four bioassays were also conducted on representative organisms of surface aquatic systems (Pimephales promelas, Ceriodaphnia dubia, Daphnia magna, and Oncorhynchus mykiss). The analytical data did not reveal any ecotoxicological risk for St. Lawrence River organisms, mainly due to strong effluent dilution. However, the substance approach showed that, because of their contribution to the ecotoxicological hazard posed by the effluent, total phosphorus (Ptot), aluminum (Al), total residual chlorine, chromium (Cr), copper (Cu), pyrene, ammonia (N–NH4 +), lead (Pb), and zinc (Zn) require more targeted monitoring. While chronic ecotoxicity tests revealed a potential impact of CSO discharges on P. promelas and C. dubia, acute toxicity tests did not show any effect on D. magna or O. mykiss, thus underscoring the importance of chronic toxicity tests as part of efforts aimed at characterizing effluent toxicity. Ultimately, the study leads to the conclusion that the coupled “substance and bioassay” approach is a reliable and robust method for assessing the ecotoxicological risk associated with complex discharges such as CSOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Public Health Association–American Water Works Association–Water Pollution Control Federation (2012) Standard methods for the examination of water and wastewater, 22nd edn

  • Angerville R (2009) Ecotoxicological risk assessment related to the discharge of Urban Wet Weather Effluent (UWWE) in the streams: case study for a French City and an Haitian City. PhD Thesis, INSA of Lyon

  • Bakopoulou S, Emmanouil C, Kungolos A (2011) Assessment of wastewater effluent quality in Thessaly region, Greece, for determining its irrigation reuse potential. Ecotoxicol Environ Saf 74(2):188–194

    Article  CAS  Google Scholar 

  • Bertrand-Krajewski JL (2006) Pollutants urban wet weather discharges. Types, concentrations, flux, physicochemical characteristics suspended solid and temporal distribution during rainfall events (in French)

  • Boillot C, Bazin C, Tissot-Guerraz F, Droguet J, Perraud M, Cetre JC, Trepo D, Perrodin Y (2008) Daily physicochemical, microbiological and ecotoxicological fluctuations of a hospital effluent according to technical and care activities. Sci Total Environ. doi:10.1016/j.scitotenv.2008.04.037

    Google Scholar 

  • Burton GA, Pitt RE (2002) Stormwater effects handbook—a toolbox for watershed managers, scientists, and engineers. Lewis, Boca Raton, 911 pp

    Google Scholar 

  • Canadian Council of Ministers of the Environment—CCME (2009) Technical supplement 3: Canada wide strategy for the management of municipal wastewater effluent—standard method and contracting provisions for the environmental risk assessment

  • Casadio A, Maglionico M, Bolognesi A, Artina S (2010) Toxicity and pollutant impact analysis in an urban river due to combined sewer overflows loads. Water Sci Technol 61(1):207–215

    Article  CAS  Google Scholar 

  • Chapman PM, Bailey H, Canaria E (2000) Toxicity of total dissolved solids associated with two mine effluents to chironomid larvae and early life stages of rainbow trout. Environ Toxicol Chem 19(1):210–214

    CAS  Google Scholar 

  • Chocat B, Bertrand-Krajewski JL, Barraud S (2007) Eaux pluviales urbaines et rejets urbains par Temps de pluie. Techniques de l’ingénieur, Paris (France). Vol. W2, n W6800. 17 pp

  • Czemiel Berndtsson J (2014) Storm water quality of first flush urban runoff in relation to different traffic characteristics. Urban Water J 11(4):284–296

    Article  Google Scholar 

  • Dembele A (2010) TSS, COD and priority pollutants in urban wet weather discharges. Measurement and modeling of event-stream. PhD Thesis, National Institute of Applied Sciences (INSA), Lyon, France, 298 pp. (in French)

  • Devez A (2004) Characterization of risks involved in agricultural activities on aquatic ecosystems. PhD Thesis, Specialty Water Sciences—National school of rural engineering, water and forestry, Department of Environmental Sciences and Public Health. Montpellier, France, 239 pp. (in French)

  • Dyer SD, Peng C, McAvoy DC, Fendinger NJ, Masscheleyn P, Castillo LV, Lim JMU (2003) The influence of untreated wastewater to aquatic communities in the Balatuin River, The Philippines. Chemosphere 52:43–53

    Article  CAS  Google Scholar 

  • ECB (2003) Technical Guidance Document (TGD) in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Ispra (Italy): European Chemical Bureau

  • Ellis JB (2000) Risk assessment approaches for ecosystem responses to transient pollution events in urban receiving waters. Chemosphere 41(1):85–91

    Article  CAS  Google Scholar 

  • Environnement Canada (2008) Industrial Generic Exposure Tool–Aquatic (IGETA) report (115-39-9 IGETA report 2008-05-23). Ébauche. Gatineau (Qc): Environnement Canada, Division des substances existantes

  • Gasperi J, Garnaud S, Rocher V, Moilleron R (2009) Priority pollutants in surface waters and settleable particles within a densely urbanised area: case study of Paris (France). Sci Total Environ 407(8):2900–2908

    Article  CAS  Google Scholar 

  • Gasperi J, Zgheib S, Cladière M, Rocher V, Moilleron R, Chebbo G (2011) Priority pollutants in urban stormwater: part 2—case of combined sewers. Water Res 46(20):6693–6703

    Article  Google Scholar 

  • Goore Bi E, Monette F, Gasperi J (2014) Analysis of the influence of rainfall variables on urban effluents concentrations and fluxes in wet weather. http://hal-enpc.archives-ouvertes.fr/ENPC/hal-01071059/fr/

  • Gromaire MC, Chebbo G, Constant A (2002) Impact of zinc roofing on urban runoff pollutant loads: the case of Paris. Water Sci Technol 45(7):113–122

    CAS  Google Scholar 

  • Hayet A (2006) Variability of ecological risk assessment methodologies: implications and opportunities for improvement. Master’s thesis research health engineering. Mention Health and Environment Engineering Institute of Health, University of Lille, France, p 95

  • Hayet A, Deram A, Couffignal B (2009) Ecological risk assessment (ERA): towards a European harmonization of methods and tools. Environnement Risques Santé 8(2) 137–147 (in French)

  • Hemain JC (1987) La pollution des eaux pluviales—de quoi parle-t-on ? Journées nationales sur la Recherche et l’expérimentation sur l’eau et l’aménagement urbain du 11 et 12 juin, Atelier N° 2 “Dépollution des eaux pluviales”, pp 9–21

  • INERIS (2012) Chemicals substances portal. Available online: http://www.ineris.fr/substances. Listing of toxicological and environmental data of chemical substances. Accessed on 18 Jul 2014

  • Kafi M, Gasperi J, Moilleron R, Gromaire MC, Chebbo G (2008) Spatial variability of the characteristics of combined wet weather pollutant loads in Paris. Water Res 42(3):539–549

    Article  CAS  Google Scholar 

  • Kayhanian M, Stransky C, Bay S, Lau SL, Stenstrom MK (2008) Toxicity of urban highway runoff with respect to storm duration. Sci Total Environ 389(2e3):386e–406e

    Article  Google Scholar 

  • Kouzayha A, Al Iskandarani M, Mokh S, Rabaa AR, Budzinski H, Jaber F (2011) Optimization of a solid-phase extraction method using centrifugation for the determination of 16 polycyclic aromatic hydrocarbons in water. J Agric Food Chem 59(14):7592–7600

    Article  CAS  Google Scholar 

  • Krejci V, Frutiger A, Kreikenbaum S, Rossi L (2005) Impact of urban stormwater discharges on receiving environments. Storm project. EAWAG. http://library.eawag.ch/ris/risweb.isa

  • Lessard P, Lavallee P (1985) Caractérisation des eaux usées de débordements de réseau unitaire. Source Can J Civil Eng 12(3):527–537

    Article  Google Scholar 

  • Maniquiz MC, Lee SY, Kim LH (2010) Long-term monitoring of infiltration trench for nonpoint source pollution control. Water Air Soil Pollut 212(1–4):13–26

    Article  CAS  Google Scholar 

  • Marsalek J, Rochfort Q, Mayer T, Servos M, Dutka B, Brownlee B (1999) Toxicity testing for controlling urban wet-weather pollution: advantages and limitations. Urban Water 1(1):91–103

    Article  CAS  Google Scholar 

  • MDDEFP Ministère du développement durable, de l’environnement, de la faune et des parcs du Québec (2013) Critères de qualité de l’eau de surface, 3e édition, Québec, Direction du suivi de l’état de l’environnement, ISBN 978-2-550-68533-3 (pdf), 510, p et 16

  • Mendonça E, Picado A, Paixão SM, Silva L, Cunha MA, Leitão S, Brito F (2009) Ecotoxicity tests in the environmental analysis of wastewater treatment plants: case study in Portugal. J Hazard Mater 163(2):665–670

    Article  Google Scholar 

  • Mourad M (2005) Modeling the quality of urban wet weather discharges. Sensitivity to experimental data and fit operational needs. PhD Thesis, INSA Lyon, France, 305 p. (in French)

  • Paffoni C (1994) Caractérisation des eaux déversées par temps de pluie à l’usine de Clichy. La Houille Blanche 1–2:33–38 (in French)

    Article  Google Scholar 

  • Passerat J, Ouattara NK, Mouchel JM, Rocher V, Servais P (2011) Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River. Water Res 45(2):893–903

    Article  CAS  Google Scholar 

  • Perrodin Y (2012) Ecological risk assessment: research and development priorities concurrent, VertigO-electronic Journal Environmental Science [Online], Debates and Perspectives, posted June 20, 2012. Accessed 19 Feb 2014. URL:http://vertigo.revues.org/12097; doi:10.4000/vertigo.12097

  • Perrodin Y, Boillot C, Angerville R, Donguy G, Emmanuel E (2011) Ecological risk assessment of urban and industrial systems: a review. Sci Total Environ 409:5162–5176

    Article  CAS  Google Scholar 

  • Postma JF, De Valk S, Dubbeldam M, Maas JL, Tonkes M, Schipper CA, Kater BJ (2002) Confounding factors in bioassays with freshwater and marine organisms. Ecotoxicol Environ Saf. doi:10.1006/eesa.2002.2195

    Google Scholar 

  • Rivard G (2005) Gestion des eaux pluviales—concepts et applications. 2e édition, alias communication design, Laval

  • Rivière JL (1998) Évaluation du risque écologique des sols pollués; Tec & Doc Lavoisier, Paris, France, p, 228

  • Sabin LD, Lim JH, Stolzenbach KD, Schiff KC (2005) Contribution of trace metals from atmospheric deposition to stormwater runoff in a small impervious urban catchment. Water Res 39:3929–3937

    Article  CAS  Google Scholar 

  • Santiago S, Becker van Slooten K, Chèvre N, Pardos M, Benninghoff C, Thybaud E, Garriver F (2002) Guide pour l’utilisation des tests écotoxicologiques, avec les daphnies, les bactéries luminescentes et les algues vertes, appliqués aux échantillons de l’environnement. Soluval Institut Forel, Santiago Université de Genève, École polytechnique fédérale de Lausanne, groupe de travail tests écotoxicologiques de la commission pour la protection des eaux du Leman, 55 p

  • Scholes L, Baun A, Seidl M, Eriksson E, Revitt M, Mouchel JM (2007) Assessment of storm water ecotoxicity using a battery of biotests. In: Highway and urban environment. Proceedings of the 8th Highway and Urban Environment Symposium Series: Alliance for Global Sustainability Bookseries. Springer, New York

  • Sidhu JPS, Hodgers L, Ahmed W, Chong MN, Toze S (2012) Prevalence of human pathogens and indicators in stormwater runoff in Brisbane, Australia. Water Res 46(20):6652–6660

    Article  CAS  Google Scholar 

  • Suter GW (1993) Environmental risk assessment. Lewis, Chelsea, p 538

    Google Scholar 

  • Tang JY, Aryal R, Deletic A, Gernjak W, Glenn E, McCarthy D, Escher BI (2013) Toxicity characterization of urban stormwater with bioanalytical tools. Water Res 47(15):5594–5606

    Article  CAS  Google Scholar 

  • Torres-Guzmán F, Avelar-González FJ, Rico-Martínez R (2010) An assessment of chemical and physical parameters, several contaminants including metals, and toxicity in the seven major wastewater treatment plants in the state of Aguascalientes, Mexico. J Environ Sci Health A Tox Hazard Subst Environ Eng. doi:10.1080/10934520903388517

    Google Scholar 

  • US EPA (1998) United States Environmental Protection Agency. Guidelines for ecological risk assessment. Washington, DC, USA, p 188

  • Van Coillie R (2011) Écotoxicologie générale et appliquée. Université du Québec à Montréal, 521 p

  • Vasquez MI, Fatta-Kassinos D (2013) Is the evaluation of “traditional” physicochemical parameters sufficient to explain the potential toxicity of the treated wastewater at sewage treatment plants? Environ Sci Pollut Res 20(6):3516–3528

    Article  CAS  Google Scholar 

  • Zgheib S, Moilleron R, Chebbo G (2012) Priority pollutants in urban stormwater: part 1—case of separate storm sewers. Water Res 46:6683–6692

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank The Longueuil (Quebec, Canada) agglomeration for financial support for the sampling program and for allowing publication of the results for research purposes.

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eustache Gooré Bi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gooré Bi, E., Monette, F., Gasperi, J. et al. Assessment of the ecotoxicological risk of combined sewer overflows for an aquatic system using a coupled “substance and bioassay” approach. Environ Sci Pollut Res 22, 4460–4474 (2015). https://doi.org/10.1007/s11356-014-3650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3650-9

Keywords

Navigation