Skip to main content

Advertisement

Log in

Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The ability of certain white-rot fungi (WRF) inocula to transform heptachlor and heptachlor epoxide and its application in artificially contaminated soil were investigated. Fungal inoculum of Pleurotus ostreatus eliminated approximately 89 % of heptachlor after 28 days of incubation, and chlordene was detected as the primary metabolite. The fungal inoculum of Pleurotus ostreatus had the highest ability to degrade heptachlor epoxide; approximately 32 % were degraded after 28 days of incubation, and heptachlor diol was detected as the metabolite product. Because Pleurotus ostreatus transformed heptachlor into a less toxic metabolite and could also effectively degrade heptachlor epoxide, it was then selected to be applied to artificially contaminated soil. The spent mushroom waste (SMW) of Pleurotus ostreatus degraded heptachlor and heptachlor epoxide by approximately 91 and 26 %, respectively, over 28 days. This finding indicated that Pleurotus ostreatus SMW could be used to bioremediate heptachlor- and heptachlor epoxide-contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arisoy M (1998) Biodegradation of chlorinated organic compounds by white-rot fungi. Bull Environ Contam Toxicol 60:872–876

    Article  CAS  Google Scholar 

  • Augustijn-Beckers PWM, Hornsby AG, Wauchope RD (1994) SCS/ARS/CES pesticide properties database for environmental decision making. II. Additional Compounds. Rev Environ Contam Toxicol 137:1–82

    Article  CAS  Google Scholar 

  • Borràs E, Caminal G, Sarrà M, Novotný C (2010) Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil. Soil Biol Biochem 42:2087–2093

    Article  Google Scholar 

  • Carter FL, Stringer CA, Heinzelman D (1971) 1-Hydroxy-2,3-epoxychlordene in Oregon soil previously treated with technical heptachlor. Bull Environ Contam Toxicol 6:249–254

    Article  CAS  Google Scholar 

  • Chiu SW, Ching ML, Fong KL, Moore D (1998) Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycol Res 102:1553–1562

    Article  CAS  Google Scholar 

  • Eggen T (1999) Application of fungal substrate from commercial mushroom production—Pleorotus ostreatus—for bioremediation of creosote contaminated soil. Int Biodeterior Biodegrad 44:117–126

    Article  CAS  Google Scholar 

  • Fahr K, Wetztein HG, Grey R, Schlosser D (1999) Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol Lett 175:127–132

    Article  CAS  Google Scholar 

  • Feroz M, Khan MAQ (1979) Metabolism of 14C-heptachlor in goldfish (Carassius auratus). Arch Environ Contam Toxicol 8:519–531

    Article  CAS  Google Scholar 

  • Feroz M, Podowski AA, Khan MAQ (1990) Oxidative dehydrochlorination of heptachlor by Daphnia magna. Pestic Biochem Physiol 36:101–105

    Article  CAS  Google Scholar 

  • Gao J, Liu L, Liu X, Lu J, Zhou H, Huang S, Wang Z, Spear PA (2008) Occurrence and distribution of organochlorine pesticides—lindane, p, p0-DDT, and heptachlor epoxide—in surface water of China. Environ Int 34:1097–1103

    Article  CAS  Google Scholar 

  • Huber W (1993) Ecotoxicological relevance of atrazine in aquatic systems. Environ Toxicol Chem 12:1865–1881

    Article  CAS  Google Scholar 

  • Kim Y, Eun H, Katase T, Fujiwara H (2007) Vertical distributions of persistent organic pollutants (POPs) caused from organochlorine pesticides in a sediment core taken from Ariake bay, Japan. Chemosphere 67:456–463

    Article  CAS  Google Scholar 

  • Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52:1539–1546

    Article  CAS  Google Scholar 

  • Law WM, Lau WN, Lo KL, Wai LM, Chiu SW (2003) Removal of biocide pentachlorophenol in water system by the spent mushroom compost of Pleurotus pulmonarius. Chemosphere 25:1531–1537

    Article  Google Scholar 

  • Li YQ, Liu HF, Tian ZL, Zhu LH, Wu YH, Tang HQ (2008) Diesel pollution biodegradation: synergetic effect of Mycobacterium and filamentous fungi. Biomed Environ Sci 21:181–187

    Article  CAS  Google Scholar 

  • Lu PY, Metcalf RL, Hirwe AS, Williams JW (1975) Evaluation of environmental distribution and fate of hexachlorocyclopentadiene, chlordene, heptachlor, and heptachlor epoxide in a laboratory model ecosystem. J Agr Food Chem 23:967–973

  • Miles JRW, Tu CM, Harris CR (1969) Metabolism of heptachlor and its degradation products by soil microorganisms. J Econ Entomol 62:1334–1348

    CAS  Google Scholar 

  • Miles JRW, Tu CM, Harris CR (1971) Degradation of heptachlor epoxide and heptachlor by a mixed culture of soil microorganisms. J Econ Entomol 64:839–841

    CAS  Google Scholar 

  • Nwachukwu EO, Osuji JO (2007) Bioremedial degradation of some herbicides by indigenous white rot fungus, Lentinus subnudus. J Plant Sci 2:619–624

    Article  CAS  Google Scholar 

  • Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  Google Scholar 

  • Poolpak T, Pokethitiyook P, Kruatrachue M, Arjarasirikoon U, Thanwaniwat N (2008) Residue analysis of organochlorine pesticides in the Mae Klong river of central Thailand. J Hazard Mater 156:230–239

    Article  CAS  Google Scholar 

  • Purnomo AS, Kamei I, Kondo R (2008) Degradation of 1,1,1-trichlro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 105:614–621

    Article  CAS  Google Scholar 

  • Purnomo AS, Koyama F, Mori T, Kondo R (2010a) DDT degradation potential of cattle manure compost. Chemosphere 80:619–624

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010b) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegrad 64:397–402

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Kondo R (2011a) Bioremediation of DDT-contaminated soil by brown-rot fungi. Int Biodeterior Biodegrad 65:691–695

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Kondo R (2011b) Basic studies and applications on bioremediation of DDT: a review. Int Biodeterior Biodegrad 65:921–930

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad 82:40–44

    Article  CAS  Google Scholar 

  • Ribas LCC, Mendonça MMD, Camelini CM, Soares CHL (2009) Use of spent mushroom substrates from Agaricus subrufescens (syn. A. blazei, A. brasiliensis) and Lentinula edodes productions in the enrichment of a soil-based potting media for lettuce (Lactuca sativa) cultivation: growth promotion and soil bioremediation. Bioresour Technol 100:4750–4757

    Article  CAS  Google Scholar 

  • Semple KT, Watts NU, Fermor TR (1998) Influence of temperature on the mineralization of [UL-14C] benzene in spent mushroom compost. FEMS Microbiol Lett 164:317–321

    Article  CAS  Google Scholar 

  • Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants: a review. Environ Pollut 112:269–283

    Article  CAS  Google Scholar 

  • Varela E, Mester T, Tien M (2003) Culture condition affecting biodegradation components of the brown-rot fungus Gloeophyllum trabeum. Arch Microbiol 180:251–256

    Article  CAS  Google Scholar 

  • World Health Organization (1984) Environmental Health Criteria 38, Heptachlor. World Health Organization, Geneva

    Google Scholar 

  • Xiao P, Mori T, Kamei I, Kondo R (2011) Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi, belonging to genus Phlebia. FEMS Microbiol Lett 314:140–146

    Article  CAS  Google Scholar 

  • Yuan D, Yang D, Wade TL, Qian Y (2001) Status of persistent organic pollutants in the sediment from several estuaries in China. Environ Pollut 114:101–111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from a research project for international research collaboration and scientific publication 2014, Directorate General of Higher education (DGHE), Ministry of Education and Culture, Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Setyo Purnomo.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purnomo, A.S., Putra, S.R., Shimizu, K. et al. Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula. Environ Sci Pollut Res 21, 11305–11312 (2014). https://doi.org/10.1007/s11356-014-3026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3026-1

Keywords

Navigation