Skip to main content

Degradation and Biotransformation of Pentachlorophenol by Microorganisms

  • Chapter
  • First Online:
Climate Resilience and Environmental Sustainability Approaches

Abstract

Chlorinated phenols are a group of commercially produced substituted phenols and cresols, also referred to as chlorophenols and chlorocresols that are prepared by direct chlorination or hydrolysis of higher chlorinated derivatives of benzene. Pentachlorophenol (PCP) is an organochlorine pesticide that has found application as a wood treatment agent and biocide. Its recalcitrant and toxic nature leading to serious environmental consequences has resulted in the need for its remediation and also a ban in many countries. Although, in nature, PCP is mostly recalcitrant, yet numerous microorganisms such as certain bacteria, fungi, algae and their consortia have been shown promising PCP biodegradation and detoxification potential. This chapter presents a brief account of PCP degradation by various microorganisms along with their transformation pathways. The chapter discussed physicochemical removal of PCP and by mixed microbial communities in soil and water using biochar and bioelectrochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agency for Toxic Substances and Disease Registry (1999) Toxicological profile for chlorophenols. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2001) Toxicological profile for pentachlorophenol; update. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA

    Google Scholar 

  • Aken PV, Lambert N, Van den Broeck R, Degrève J, Dewil R et al (2019) Advances in ozonation and biodegradation processes to enhance chlorophenol abatement in multisubstrate wastewaters: a review. Environ Sci Water Res Technol 5:444–481. https://doi.org/10.1039/C8EW00562A

    Article  Google Scholar 

  • Ali SS, Kornaros M, Manni A, Sun J, El-Shanshoury AERR, Kenawy ER, Khalil MA (2020) Enhanced anaerobic digestion performance by two artificially constructed microbial consortia capable of woody biomass degradation and chlorophenols detoxification. J Hazard Mater 389:122076

    Article  CAS  Google Scholar 

  • Allison N, Skinner AJ, Cooper RA et al (1983) Dehalogenases of a 2, 2-dichloropropionate degrading bacterium. J Gen Microbiol 129:1293–1297

    Google Scholar 

  • Apajalahti JHA, Salkinoja-Salonen MS (1987) Complete dechlorination of tetrachlorohydroquinone by cell-extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J Bacteriol 169:5125–5130

    Article  CAS  Google Scholar 

  • Arora PK, Bae H (2014) Bacterial degradation of chlorophenols and their derivatives. Microb Cell Fact 13(31):1–17

    Google Scholar 

  • Bevenue A, Beckman H (1967) Pentachlorophenol: a discussion of its properties and its occurrence as a residue in human and animal tissues. Res Rev 19:86–730

    Google Scholar 

  • Bosso L, Scelza R, Varlese R, Meca G, Testa A, Rao MA, Cristinzio G et al (2016) Assessing the effectiveness of Byssochlamys nivea and Scopulariopsis brumptii in pentachlorophenol removal and biological control of two Phytophthora species. Fungal Biol 120(4):645–653

    Article  Google Scholar 

  • Cai X, Yuan Y, Yu L, Zhang B, Li J, Liu T, Yu Z, Zhou S et al (2020) Biochar enhances bioelectrochemical remediation of pentachlorophenol-contaminated soils via long-distance electron transfer. J Hazard Mater 391:122213

    Article  CAS  Google Scholar 

  • Carvalho MB, Martins I, Leitão MC, Garcia H, Rodrigues C, San Romão V, McLellan I, Hursthouse A, Pereira CS et al (2009) Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J Ind Microbiol Biotechnol 36(10):1249–1256

    Article  CAS  Google Scholar 

  • Chen ST, Kang SY, Muller R et al (1999) Pentachlorophenol and crystal violet degradation in water and soils using haeme and hydrogen peroxides. Water Res 33:3657–3665

    Article  CAS  Google Scholar 

  • Coelho GD, Ballaminut N, Thomaz DV, Gomes Machado KM et al (2019) Characterization of a thermostable Deconica castanella Laccase and application toward pentachlorophenol degradation. Prep Biochem Biotechnol 49(9):908–915

    Article  CAS  Google Scholar 

  • Crawford RL, Ederer MM, Laskin AI, Whete DC et al (1999) Phylogeny of Sphingomonas species that degrade pentachlorophenol. J Ind Microbiol Biotechnol 23:320–325

    Article  CAS  Google Scholar 

  • de Morais P, Stoichev T, Basto MCP, Ramos V, Vasconcelos VM, Vasconcelos MTS (2014) Cyanobacterium Microcystis aeruginosa response to pentachlorophenol and comparison with that of the microalga Chlorella vulgaris. Water Res 52:63–72

    Article  CAS  Google Scholar 

  • De Saiah D (1978) Effects of PCP on the ATPase in rat tissue. In: Rao KR (ed) Pentachlorphenol: chemistry, pharmacology and environmental toxicology. Plenum Press, New York, pp 277–283

    Google Scholar 

  • Ederrer MM, Crawford RL, Herwig RP, Orser CS et al (1997) PCP degradation mediated by closely related strains of the genus Sphingomonas. Mol Biol 6:39–49

    Google Scholar 

  • Edgehill RU (1998) Effect of copper chrome arsenate (CCA) components on PCP degradation by Arthrobacter strain ATCC-33790. Bull Environ Contam Toxicol 57:258–263

    Article  Google Scholar 

  • Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657

    Article  CAS  Google Scholar 

  • Gilbert FJ Jr, Minn CE, Dunean RG, Wekinson J et al (1990) Effect of pentachlorophenol and other preservatives on the health of wood treating workers in Hawaii. Arch Environ Contam Toxicol 19:603–609

    Article  CAS  Google Scholar 

  • Gomez Catalan J, To Tigueres J, Rodamilans M, Corbella J et al (1991) Transport of organochlorine residues in the rat and human blood. Arch Environ Cont Toxicol 20:61–66

    Article  CAS  Google Scholar 

  • Gonzalez JF, Hu WS (1991) Effect of glutamate on the degradation of pentachlorophenol by Flavobacterium sp. Appl Microbiol Biotechnol 35:100–104

    Article  CAS  Google Scholar 

  • Gunawardana B, Singhal N, Swedlund P et al (2011) Degradation of chlorinated phenols by zero valent iron and bimetals of iron: a review. Environ Eng Res 16(4):187–203

    Article  Google Scholar 

  • Hassan AB, Seligeman H, Bassan HM (1985) Intravascular haemolysis induced by PCP. Br Med J 291:21–22

    Article  CAS  Google Scholar 

  • Hechmi N, Bosso L, El-Bassi L, Scelza R, Testa A, Jedidi N, Rao MA et al (2016) Depletion of pentachlorophenol in soil microcosms with Byssochlamys nivea and Scopulariopsis brumptii as detoxification agents. Chemosphere 165:547–554

    Article  CAS  Google Scholar 

  • Huang L, Wang Q, Quan X, Liu Y, Chen G et al (2013) Bioanodes/biocathodes formed at optimal potentials enhance subsequent pentachlorophenol degradation and power generation from microbial fuel cells. Bioelectrochemistry 94:13–22

    Article  CAS  Google Scholar 

  • Igbinosa EO, Odjadjare EE, Chigor VN, Igbinosa IH, Emoghene AO, Ekhaise FO, Igiehon NO, Idemudia OG et al (2013) Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective. Sci World J 2013:11

    Article  Google Scholar 

  • Keane MA (2005) A review of catalytic approaches to waste minimization: case study—liquid-phase catalytic treatment of chlorophenols. J Chem Technol Biotechnol 80:1211–1222

    Article  CAS  Google Scholar 

  • Khan N, Khan MD, Nizami AS, Rehan M, Shaida A, Ahmad A, Khan MZ et al (2018) Energy generation through bioelectrochemical degradation of pentachlorophenol in microbial fuel cell. RSC Adv 8(37):20726–20736

    Article  CAS  Google Scholar 

  • Kim YH, Carraway ER (2003) Dechlorination of chlorinated phenols by zero valent zinc. Environ Technol 24:1455–1463

    Article  CAS  Google Scholar 

  • Lange CC, Schneider BJ, Orser CS et al (1996) Verification of the role of pcp 4-monooxygenase in chlorine elimination from pentachlorophenol by Flavobacterium sp. strain ATCC 39723. Biochem Biophys Res Commun 219:146–149

    Article  CAS  Google Scholar 

  • Lee SG, Yoon BD, Park YH, On HM et al (1998) Isolation of novel pentachlorophenol degrading bacterium Pseudomonas sp. Bu 34. J Appl Microbiol 85:1–8

    Article  CAS  Google Scholar 

  • León-Santiesteban HH, Wrobel K, García LA, Revah S, Tomasini A et al (2014) Pentachlorophenol sorption by Rhizopus oryzae ENHE: pH and temperature effects. Water Air Soil Pollut 225(5):1947

    Article  CAS  Google Scholar 

  • Li H, Jiang Y, Chen L, Chen Y, Wen X, Tao L et al (2019) Carbon sources mediate microbial pentachlorophenol dechlorination in soils. J Hazard Mater 373:716–724

    Article  CAS  Google Scholar 

  • Lin Z, Bai J, Zhen Z, Lao S, Li W, Wu Z, Li Y, Spiro B, Zhang D (2016) Enhancing pentachlorophenol degradation by vermicomposting associated bioremediation. Ecol Eng 87:288–294

    Article  Google Scholar 

  • MichaÅ‚owicz J, Majsterek I (2010) Chlorophenols, chlorocatechols and chloroguaiacols induce DNA base oxidation in human lymphocytes (in vitro). Toxicology 268:171–175

    Article  CAS  Google Scholar 

  • Mikesell MD, Boyd SA (1986) Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl Environ Microbiol 52:861–865

    Article  CAS  Google Scholar 

  • Monsanto Chemical Co. (1963) Tech Bull SC-8, St. Louis, Mol

    Google Scholar 

  • Muller F, Caillard L (2011) Chlorophenols. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, New York

    Google Scholar 

  • Ning D, Wang H (2012) Involvement of cytochrome P450 in pentachlorophenol transformation in a white rot fungus Phanerochaete chrysosporium. PLoS One 7(9):e45887

    Article  CAS  Google Scholar 

  • Ohtsubo Y, Miyauchi K, Kanda K, Hatta T, Kiyohara H, Senda T, Nagata Y, Mitsui Y, Takagi M et al (1999) PcpA, which is involved in the degradation of pentachlorophenol in Sphingomonas chlorophenolica ATCC39723, is a novel type of ring-cleavage dioxygenase. FEBS Lett 459:395–398

    Article  CAS  Google Scholar 

  • Olaniran AO, Igbinosa EO (2011) Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere 83:1297–1306

    Article  CAS  Google Scholar 

  • Orser CS, Lange CC, Xun L, Zahrt TC, Schneider BJ et al (1993a) Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J Bacteriol 175:411–416

    Article  CAS  Google Scholar 

  • Orser CS, Dutton J, Lange C, Jablonski P, Xun L, Hargis M et al (1993b) Characterization of a Flavobacterium glutathione S-transferase gene involved reductive dechlorination. J Bacteriol 175:2640–2644

    Article  CAS  Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civ Eng 122(1):73–105

    Article  Google Scholar 

  • Papazi A, Karamanli M, Kotzabasis K et al (2019) Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus—the biodegradation strategy of microalgae. J Biotechnol 296:61–68

    Article  CAS  Google Scholar 

  • Patel UD, Suresh S (2008) Electrochemical treatment of pentachlorophenol in water and pulp bleaching effluent. Sep Purif Technol 61:115–122

    Article  CAS  Google Scholar 

  • Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S et al (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47:219–256

    Article  CAS  Google Scholar 

  • Premalatha A, Raj Kumar GS (1994) Pentachlorophenol degradation by Pseudomonas aeruginosa. World J Microbiol Biotechnol 10:334–337

    Article  CAS  Google Scholar 

  • Resnick S, Chapman PJ (1994) Physiological properties and substrate specificity of pentachlorophenol degrading Pseudomonas species. Biodegradation 50:47–54

    Google Scholar 

  • Ruiz-Lara A, Fierro F, Carrasco U, Oria JA, Tomasini A et al (2020) Proteomic analysis of the response of Rhizopus oryzae ENHE to pentachlorophenol: understanding the mechanisms for tolerance and degradation of this toxic compound. Process Biochem 95:242–250

    Article  CAS  Google Scholar 

  • Saber DL, Crawford RL (1985) Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol 50:1512–1518

    Article  CAS  Google Scholar 

  • Saboo VM, Gealt MA, Fenster TS et al (1998) Gene sequences of the pcpB of pentachlorophenol-degrading Sphingomonas chlorophenolica found in soil. Can J Microbiol 44:667–675

    Article  CAS  Google Scholar 

  • Shiu WY, Ma KC, Varhanickova D, Mackay D et al (1994) Chlorophenols and alkylphenols—a review and correlation of environmentally relevant properties and fate in an evaluative environment. Chemosphere 29:1155–1224

    Article  CAS  Google Scholar 

  • Slater JH, Lovatt D (1984) Biodegradation and the significance of microbial communities. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 439–485

    Google Scholar 

  • Srivastava S, Thakur IS (2007) Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18:637–646

    Article  CAS  Google Scholar 

  • Srivastava S, Ahmad AH, Thakur IS (2007) Bioremediation potentiality of microorganism for removal of chromium and pentachlorophenol in tannery effluent. Bioresour Technol 98:1128–1132

    Article  CAS  Google Scholar 

  • Steiert JG, Crawford RL (1986) Catabolism of pentachlorophenol by a Flavobacterium sp. Biochem Biophys Res Commun 141:825–830

    Article  CAS  Google Scholar 

  • Stephen DP, Ayalur BK (2017) Effect of nutrients on Chlorella pyrenoidosa for treatment of phenolic effluent of coal gasification plant. Environ Sci Pollut Res 24(15):13594–13603

    Article  CAS  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A et al (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    Article  CAS  Google Scholar 

  • Tanjore S, Viraraghavan T (1994) Pentachlorophenol—water pollution impacts and removal technologies. Int J Environ Stud 45:155–164

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (2014) Priority pollutant list. https://www.epa.gov/eg/toxic-andpriority-pollutants-under-clean-water-act#priority

  • Uotila JS, Kitunen VH, Saastamoinen T, Coote T, Haggblom MM, Salkinoja-Salonen MS et al (1992) Characterization of aromatic dehalogenases of Mycobacterium fortuitum CG-2. J Bacteriol 174:5669–5675

    Article  CAS  Google Scholar 

  • Vacondio B, Birolli WG, Ferreira IM, Seleghim MH, Gonçalves S, Vasconcellos SP, Porto AL et al (2015) Biodegradation of pentachlorophenol by marine-derived fungus Trichoderma harzianum CBMAI 1677 isolated from ascidian Didemnun ligulum. Biocatal Agric Biotechnol 4(2):266–275

    Article  Google Scholar 

  • Wang S, Huang L, Gan L, Quan X, Li N, Chen G, Lu L, Xing D, Yang F et al (2012) Combined effects of enrichment procedure and non-fermentable or fermentable co-substrate on performance and bacterial community for pentachlorophenol degradation in microbial fuel cells. Bioresour Technol 120:120–126

    Article  CAS  Google Scholar 

  • Weavers LK, Malmstadt N, Haffman NR et al (2000) Kinetics and mechanisms of pentachlorophenol degradation by sonication and ozonation. Environ Sci Technol 34:1280–1285

    Article  CAS  Google Scholar 

  • Wild SR, Harrad SJ, Jones KC et al (1992) Pentachlorophenol in the UK environment. I. A budget and source inventory. Chemosphere 24:833–845

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2015) Pentachlorophenol. Available online: http://www.inchem.org/documents/ehc/ehc/ehc71.htm

  • Xiao P, Kondo R (2020) Biodegradation and biotransformation of pentachlorophenol by wood-decaying white rot fungus Phlebia acanthocystis TMIC34875. J Wood Sci 66(1):1–11

    Article  CAS  Google Scholar 

  • Xu Y, He Y, Egidi E, Franks AE, Tang C, Xu J et al (2019) Pentachlorophenol alters the acetate-assimilating microbial community and redox cycling in anoxic soils. Soil Biol Biochem 131:133–140

    Article  CAS  Google Scholar 

  • Xu Y, Liu J, Cai W, Feng J, Lu Z, Wang H, Franks AE, Tang C, He Y, Xu J (2020) Dynamic processes in conjunction with microbial response to disclose the biochar effect on pentachlorophenol degradation under both aerobic and anaerobic conditions. J Hazard Mater 384:121503

    Article  CAS  Google Scholar 

  • Xun L, Orser CS (1991) Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J Bacteriol 173:4447–4453

    Article  CAS  Google Scholar 

  • Zhang B, Cheng Y, Shi J, Xing X, Zhu Y, Xu N, Xia J, Borthwick AG (2019a) Insights into interactions between vanadium (V) bio-reduction and pentachlorophenol dechlorination in synthetic groundwater. Chem Eng J 375:121965

    Article  CAS  Google Scholar 

  • Zhang C, Zhang N, Xiao Z, Li Z, Zhang D (2019b) Characterization of biochars derived from different materials and their effects on microbial dechlorination of pentachlorophenol in a consortium. RSC Adv 9(2):917–923

    Article  CAS  Google Scholar 

  • Zhao X, Tan W, Peng J, Dang Q, Zhang H, Xi B (2020) Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process. Environ Int 135:105380

    Article  CAS  Google Scholar 

  • Zhu M, Feng X, Qiu G, Feng J, Zhang L, Brookes PC, Xu J, He Y (2019) Synchronous response in methanogenesis and anaerobic degradation of pentachlorophenol in flooded soil. J Hazard Mater 374:258–266

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaili Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, M., Gupta, A., Srivastava, S. (2021). Degradation and Biotransformation of Pentachlorophenol by Microorganisms. In: Kaushik, A., Kaushik, C.P., Attri, S.D. (eds) Climate Resilience and Environmental Sustainability Approaches. Springer, Singapore. https://doi.org/10.1007/978-981-16-0902-2_16

Download citation

Publish with us

Policies and ethics