Skip to main content
Log in

The capability of estuarine sediments to remove nitrogen: implications for drinking water resource in Yangtze Estuary

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Water in the Yangtze Estuary is fresh most of the year because of the large discharge of Yangtze River. The Qingcaosha Reservoir built on the Changxing Island in the Yangtze Estuary is an estuarine reservoir for drinking water. Denitrification rate in the top 10 cm sediment of the intertidal marshes and bare mudflat of Yangtze Estuarine islands was measured by the acetylene inhibition method. Annual denitrification rate in the top 10 cm of sediment was 23.1 μmol m−2 h−1 in marshes (ranged from 7.5 to 42.1 μmol m−2 h−1) and 15.1 μmol m−2 h−1 at the mudflat (ranged from 6.6 to 26.5 μmol m−2 h−1). Annual average denitrification rate is higher at mashes than at mudflat, but without a significant difference (p = 0.084, paired t test.). Taking into account the vegetation and water area of the reservoir, a total 1.42 × 108 g N could be converted into nitrogen gas (N2) annually by the sediment, which is 97.7 % of the dissolved inorganic nitrogen input through precipitation. Denitrification in reservoir sediment can control the bioavailable nitrogen level of the water body. At the Yangtze estuary, denitrification primarily took place in the top 4 cm of sediment, and there was no significant spatial or temporal variation of denitrification during the year at the marshes and mudflat, which led to no single factor determining the denitrification process but the combined effects of the environmental factors, hydrologic condition, and wetland vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al Ghadban AN, Uddin S, Maltby E, Al Khabbaz A, Al Mutairi A (2012) Denitrification potential of the Northern Arabian Gulf-an experimental study. Environ Monit Assess 184:7103–7112

    Article  CAS  Google Scholar 

  • Barnes J, Owens NJP (1998) Denitrification and nitrous oxide concentrations in the Humber estuary, UK, and adjacent coastal zones. Mar Pollut Bull 37:247–260

    Article  CAS  Google Scholar 

  • Bastviken SK, Eriksson PG, Premrov A, Tonderski K (2005) Potential denitrification in wetland sediments with different plant species detritus. Ecol Eng 25:183–190

    Article  Google Scholar 

  • Bremer C, Braker G, Matthies D, Reuter A, Engels CCR (2007) Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Appl Environ Microb 73(21):6876–6884

    Article  CAS  Google Scholar 

  • Caffrey JM, Kemp WM (1992) Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments. Limnol Oceanogr 37:1483–1495

    Article  CAS  Google Scholar 

  • Chai C, Yu ZM, Song XX, Cao XH (2006) The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China. Hydrobiologia 563:313–328

    Article  CAS  Google Scholar 

  • Cheng F, Song X, Yu Z, Liu D (2012) Historical records of eutrophication in Changjiang (Yangtze) River estuary and its adjacent East China Sea. Biogeosciences Discuss 9:6261–6291

    Article  Google Scholar 

  • Cornwell JC, Kemp WM, Kana TM (1999) Denitrification in coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquatic Ecologly 33:41–54

    Article  CAS  Google Scholar 

  • Dassonville N, Guillaumaud N, Piola F, Meerts P, Poly F (2011) Niche construction by the invasive Asian knotweeds (species complex Fallopia): impact on activity, abundance and community structure of denitrifiers and nitrifiers. Biol Invasions 13:1115–1133

    Article  Google Scholar 

  • De Wit R, Stal LJ, Lomstein BA, Herbert RA, Van Gemerden H, Viaroli P, Cecherelli VU, Rodriguez-Valera F, Bartoli M, Giordani G, Azzoni R, Schaub B, Welsh DT, Donnelly A, Cifuentes A, Antón J, Finster K, Nielsen LB, Pedersen AU, Neubauer AT, Colangelo MA, Heijs SK (2001) Robust: the role of buffering capacities in stabilising coastal lagoon ecosystems. Cont Shelf Res 21(18–19):2021–2041

    Article  Google Scholar 

  • DeLaune RD, Jugsujinda A (2003) Denitrification potential in a Louisiana wetland receiving diverted Mississippi River water. Chem Ecol 19:411–418

    Article  CAS  Google Scholar 

  • DeLaune RD, White JR (2012) Will coastal wetlands continue to sequester carbon in response to an increase in global sea level? A case study of the rapidly subsiding Mississippi River deltaic plain. Clim Chang 110(1/2):297–314

    Article  Google Scholar 

  • DeLaune RD, Jugsujinda A, West JL, Johnson CB, Kongchum M (2005) A screening of the capacity of Louisiana freshwater wetlands to process nitrate in diverted Mississippi River water. Ecol Eng 25:315–321

    Article  Google Scholar 

  • Deutsch B, Forster S, Wilhelm M, Dippner JW, Voss M (2010) Denitrification in sediments as a major nitrogen sink in the Baltic Sea: an extrapolation using sediment characteristics. Biogeosciences 7:3259–3271

    Article  CAS  Google Scholar 

  • Fear JM, Thompson SP, Gallo TE, Paerl HW (2005) Denitrification rates measured along a salinity gradient in the eutrophic Neuse River Estuary, North Carolina, USA. Estuaries 28(4):608–619

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • García-Ruiz R, Pattinson SN, Whitton BA (1998) Denitrification in sediments of the freshwater tidal Yorkshire Ouse. Sci Total Environ 210(211):321–327

    Article  Google Scholar 

  • Grasshof K, Ehrhard M, Kremling K (1983) Methods of seawater analysis, 2nd edn. Verlag Chemie, Weiheim

    Google Scholar 

  • Guan DM, Fan JF, Chen JY, Shi F, Ming HX, Chen LG, Zhao HD (2013) Seasonal variation of denitrification rate in estuary sediments of Liaohe, China. Third International Conference on Intelligent System Design and Engineering Applications 1254-1259

  • Hasegawa T, Okino T (2004) Seasonal variation of denitrification rate in Lake Suwa sediment. Limnology 5:33–39

    Article  CAS  Google Scholar 

  • Heip CHR, Goosen NK, Herman PMJ, Kromkamp J, Middelburg JJ, Soetaert K (1995) Production and consumption of biological particles in temperate tidal estuaries. Oceanogr Mar Biol Ann Rev 33:1–149

    Google Scholar 

  • Howarth RW, Marino R (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical control. Limnol Oceanogr 33:688–701

    Article  CAS  Google Scholar 

  • Jin BS, Fu CZ, Zhong JS, Li B, Chen JK, Wu JH (2007) Fish utilization of a salt marsh intertidal creek in the Yangtze River estuary, China. Estuar Coast Shelf Sci 73(3–4):844–852

    Article  Google Scholar 

  • Kana TM, Sullivan MB, Cornwell JC, Groszkowski K (1998) Denitrification in estuarine sediments determined by membrane inlet mass spectrometry. Limnol Oceanogr 43:334–339

    Article  CAS  Google Scholar 

  • King D, Nedwell DB (1984) Changes in the nitrate-reducing community of an anaerobic saltmarsh sediment in response to seasonal selection by temperature. J Gen Microbiol 130:2935–2941

    CAS  Google Scholar 

  • Kreiling RM, Richardson WB, Cavanaugh JC, Bartsch LA (2011) Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake: the role of rooted aquatic vegetation. Biogeochemistry 104:309–324

    Article  CAS  Google Scholar 

  • Lindau CW, Delaune RD, Scaroni AE, Nyman JA (2008) Denitrification in cypress swamp within the Atchafalaya River Basin, Louisiana. Chemosphere 70:886–894

    Article  CAS  Google Scholar 

  • Livingstone MW, Smith RV, Laughlin RJ (2000) A spatial study of denitrification potential of sediment in Belfast and Strangford Loughs and its significance. Sci Total Environ 251–252:369–380

    Article  Google Scholar 

  • Magalhães CM, Joye SB, Moreira RM, Wiebe WJ, Bordalo AA (2005) Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal. Water Res 39:1783–1794

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Sumner ME (ed) Methods of soil analysis. Part 3-chemical methods (Soil Science Society of America Book Series, No. 5). Madison, pp 961–1010

  • Nielsen K, Nielsen LP, Rasmussen P (1995) Estuarine nitrogen retention independently estimated by the denitrification rate and mass balance methods: a study of Norsminde Fjord, Denmark. Mar Ecol Prog Ser 119:275–283

    Article  Google Scholar 

  • Ogilvie BG, Nedwell DB, Harrison RM, Robinson AD, Sage AS (1997) High nitrate, muddy estuaries as nitrogen sinks: the nitrogen budget of the River Colne estuary. Mar Ecol-Prog Ser 150:217–228

    Article  CAS  Google Scholar 

  • Onken R, Riethmüller R (2010) Determination of the freshwater budget of tidal flats from measurements near a tidal inlet. Cont Shelf Res 30(8):924–933

    Article  Google Scholar 

  • Pelegri SP, Nielsen LP, Blackburn TH (1994) Denitrification in estuarine sediment stimulated by the irrigation activity of the amphipod Corophium volutator. Mar Ecol Prog Ser 105:285–290

    Article  Google Scholar 

  • Pfenning KS, McMahon PB (1996) Effect of nitrate, organic carbon, and temperature on potential denitrification rates in nitrate-rich riverbed sediments. J Hydrol 187:283–295

    Article  Google Scholar 

  • Piña-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81(1):111–130

    Article  Google Scholar 

  • Poulin P, Pelletier E, Saint-Louis R (2007) Seasonal variability of denitrification efficiency in northern salt marshes: an example from the St. Lawrence Estuary Mar Environ Res 63(5):490–505

    Article  CAS  Google Scholar 

  • Rysgaard S, Risgaard-Petersen N, Sloth NP (1996) Nitrification, denitrification and nitrate-ammonification in sediments of two coastal lagoons in southern France. In: Caumette P, Castel J, Herbert RA (eds) Coastal Lagoons Eutrophication and Anaerobic Processes. Kluwer Academic Publishers, Dordrecht, pp 133–141

    Chapter  Google Scholar 

  • Saunders DL, Kalff J (2001) Denitrification rates in the sediment of lake Memohremagog, Canada-USA. Water Res 35(8):1897–1904

    Article  CAS  Google Scholar 

  • Seitzinger SP, Kroeze C (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Glob Biogeochem Cycles 12:93–113

    Article  CAS  Google Scholar 

  • Seitzinger SP, Sanders RW (1997) Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication. Mar Eco-Prog Ser 159:1–12

    Article  CAS  Google Scholar 

  • Seitzinger SP, Nielsen LP, Caffrey J, Christensen PB (1993) Denitrification measurements in aquatic sediments: a comparison of three methods. Biogeochemistry 23:147–167

    Article  CAS  Google Scholar 

  • Seo DC, Yu KW, Delaune RD (2008) Influence of salinity level on sediment denitrification in a Louisiana estuary receiving diverted Mississippi River water. Arch Agronom Soil 54(3):249–257

    Article  Google Scholar 

  • Shen Z, Liu Q, Zhang S, Miao H, Zhang P (2003) A nitrogen budget of the Changjiang River catchment. Ambio 32:65–69

    Google Scholar 

  • Silvennoinen H, Hietanen S, Liikanen A, Stange CF, Russow R, Kuparinen J, Martikainen PJ (2007) Denitrification in the river estuaries of the northern Baltic Sea. Ambio 36(2–3):134–140

    Article  CAS  Google Scholar 

  • Smyth AR, Thompson SP, Siporin KN, Gardner WS, McCarthy MJ, Piehler MF (2013) Assessing nitrogen dynamics throughout the estuarine landscape. Estuar Coast 36:44–55

    Article  CAS  Google Scholar 

  • Song K, Kang H, Zhang L, Mitsch W (2012) Seasonal and spatial variations of denitrification and denitrifying bacterial community structure in created riverine wetlands. Ecol Eng 38:130–134

    Article  Google Scholar 

  • State Oceanic Administration People’s Republic of China (2013) 2012 Environmental status bulletin of China oceans. China Oceanic information Network. http://www.coi.gov.cn/gongbao/nrhuanjing/nr2012/201304/t20130401_26413.html. Accessed 1 April 2013

  • Trimmer M, Nedwell DB, Sivyer DB, Malcolm SJ (1998) Nitrogen fluxes through the lower estuary of the Great Ouse, England: the role of the bottom sediments. Mar Ecol-Prog Ser 163:109–124

    Article  CAS  Google Scholar 

  • Vanderborght J, Billen G (1975) Vertical distribution of nitrate concentration in interstitial water of marine sediments with nitrification and denitrification. Limnol Oceanogr 20(6):953–961

    Article  CAS  Google Scholar 

  • VanZomeren CM, White JR, DeLaune RD (2013) Ammonification and denitrification rates in coastal Louisiana bayou sediment and marsh soil: implications for Mississippi river diversion management. Ecol Eng 54:77–81

    Article  Google Scholar 

  • Veraart AJ, de Bruijne WJJ, de Klein JJM, Peeters ETHM, Scheffer M (2011) Effects of aquatic vegetation type on denitrification. Biogeochemistry 104:267–274

    Article  Google Scholar 

  • Wang D, Chen ZL, Xu SY, Hu L, Wang J (2006) Denitrification in Chongming east tidal flat sediment, Yangtze Estuary, China. Sci China ser D 49(10):1090–1097

    Article  CAS  Google Scholar 

  • Wang D, Chen ZL, Xu SY, Da LJ, Bi CJ, Wang J (2007) Denitrification in Tidal Flat Sediment, Yangtze Estuary. Sci China ser D 50(6):812–820

    Article  CAS  Google Scholar 

  • Wang J, Chen ZL, Wang DQ, Sun XJ, Xu SY (2009) Evaluation of dissolved inorganic nitrogen eliminating capability of the sediment in the tidal wetland of the Yangtze Estuary. J Geogr Sci 19:447–460

    Article  CAS  Google Scholar 

  • Whitall D, Bricker S, Ferreira J, Nobre Ana M, Simas T, Silva M (2007) Assessment of eutrophication in Estuaries: pressure-state-response and nitrogen source apportionment. Environ Manage 40:678–690

    Article  Google Scholar 

  • Wu JZ, Chen NW, Hong HS, Lu T, Wang LJ, Chen ZH (2013) Direct measurement of dissolved N2 and denitrification along a subtropical river-estuary gradient, China. Mar Pollut Bull 66(1–2):125–134

    Article  CAS  Google Scholar 

  • Xu S (2004) Atlas of Shanghai Urban Physical Geography. China Map Press, Shanghai

    Google Scholar 

  • Yoon WB, Benner R (1992) Denitrification and oxygen consumption in sediments of two south Texas estuaries. Mar Ecol-Prog Ser 90:157–167

    Article  CAS  Google Scholar 

  • Yu Z, Li Y, Deng H, Wang D, Chen Z, Xu S (2012) Effect of Scirpus mariqueter on nitrous oxide emissions from a subtropical monsoon estuarine wetland. J Geophys Res 117, G02017

    Google Scholar 

  • Zhu J, Gu Y, Wu H (2013) Determination of the period not suitable for taking domestic water supply to the Qingcaosha reservoir near Changjiang River estuary. Oceanologia et Limnologia Sinica 44(5):1138–1145

  • Zimmerman AR, Benner R (1994) Denitrification, nutrient regeneration and carbon mineralization in sediments of Galveston Bay, Texas, USA. Mar Ecol-Prog Ser 114:275–288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (Grant no. 40903049), the Science & Technology Department of Shanghai (Grant no. 11230705800), the Ministry of Environmental Protection of China and Ministry of Housing and Urban-Rural development of China (Grant no. 2013ZX07310-001-04), the Fundamental Research Funds for the Central Universities, and the Natural Science Foundation of Shandong province (Grant no. ZR2010DL007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqi Wang.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wang, D., Deng, H. et al. The capability of estuarine sediments to remove nitrogen: implications for drinking water resource in Yangtze Estuary. Environ Sci Pollut Res 21, 10890–10899 (2014). https://doi.org/10.1007/s11356-014-2914-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2914-8

Keywords

Navigation