Skip to main content
Log in

Endurance exercise training under normal diet conditions activates skeletal muscle protein synthesis and inhibits protein degradation signaling except MuRF1

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

Loss of skeletal muscle mass, which depends on a balance between protein synthesis and degradation, is common in sarcopenia, cachexia, and some diseases. The purpose of this study was to investigate the alterations and interactions of protein synthesis and degradation signaling components induced by 8-week endurance exercise training with a normal diet.

Methods

Two exercise (n = 8) and control (n = 7) groups of Wistar rats were kept under standard conditions. The exercise group performed 8-week endurance running at 65–70% VO2max, 30–60 min, on a treadmill with 0° slope, and the rats of the control group were maintained under identical conditions except exercise training. Forty-eight hours after the last exercise session, the dissected soleus muscles were stored at − 80 °C for gene and protein expression analyses.

Results

Although there was a non-significant increase in mTOR gene expression, Akt1 and S6K1 increased significantly compared with the control group, which was confirmed by Western blot analysis. In addition, given that the FoxO3a did not increase, 4E-BP1 and LC3a were suppressed significantly and were confirmed by Western blot analysis. Contrary to our hypothesis, the MuRF1 gene expression was significantly increased compared with the control group.

Conclusion

The results showed that the moderate-intensity endurance exercise training protocol with no calories restrictions, normal diet, not only does not lead to protein degradation but also sufficiently activates protein synthesis signaling. Further investigations including exercise training with different intensities and nutritional status are needed to reveal the cause of the unusual MuRF1 response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kandarian SC, Jackman RW (2006) Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33(2):155–165. https://doi.org/10.1002/mus.20442

    Article  CAS  PubMed  Google Scholar 

  2. McCarthy JJ, Esser KA (2010) Anabolic and catabolic pathways regulating skeletal muscle mass. Curr Opin Clin Nutr Metab Care 13(3):230–235. https://doi.org/10.1097/MCO.0b013e32833781b5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology 23(3):160–170. https://doi.org/10.1152/physiol.00041.2007

    Article  CAS  PubMed  Google Scholar 

  4. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. https://doi.org/10.1016/j.cell.2007.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280(17):4294–4314. https://doi.org/10.1111/febs.12253

    Article  CAS  PubMed  Google Scholar 

  6. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484. https://doi.org/10.1016/j.cell.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  7. Hodson N, Philp A (2019) The importance of mTOR trafficking for human skeletal muscle translational control. Exerc Sport Sci Rev 47(1):46–53. https://doi.org/10.1249/JES.0000000000000173

    Article  PubMed  Google Scholar 

  8. Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N (2004) eIF4E–from translation to transformation. Oncogene 23(18):3172–3179. https://doi.org/10.1038/sj.onc.1207549

    Article  CAS  PubMed  Google Scholar 

  9. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960–976. https://doi.org/10.1016/j.cell.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14(3):395–403. https://doi.org/10.1016/S1097-2765(04)00211-4

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Karpac J, Jasper H (2014) Promoting longevity by maintaining metabolic and proliferative homeostasis. J Exp Biol 217(1):109–118. https://doi.org/10.1242/jeb.089920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benayoun BA, Caburet S, Veitia RA (2011) Forkhead transcription factors: key players in health and disease. Trends Genet 27(6):224–232. https://doi.org/10.1016/j.tig.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  13. Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307(6):E469-484. https://doi.org/10.1152/ajpendo.00204.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao L, Li H, Wang Y, Zheng A, Cao L, Liu J (2019) Autophagy deficiency leads to impaired antioxidant defense via p62-FOXO1/3 axis. Oxid Med Cell Longev. https://doi.org/10.1155/2019/2526314

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412. https://doi.org/10.1016/S0092-8674(04)00400-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Waddell DS, Baehr LM, Van Den Brandt J, Johnsen SA, Reichardt HM, Furlow JD, Bodine SC (2008) The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab 295(4):E785-797. https://doi.org/10.1152/ajpendo.00646.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee YK, Lee JA (2016) Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep 49(8):424–430. https://doi.org/10.5483/BMBRep.2016.49.8.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483. https://doi.org/10.1016/j.cmet.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  19. Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H (2005) Selective activation of AMPK-PGC-1α or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 19(7):786–788. https://doi.org/10.1096/fj.04-2179fje

    Article  CAS  PubMed  Google Scholar 

  20. Huet C, Boudaba N, Guigas B, Viollet B, Foretz M (2020) Glucose availability but not changes in pancreatic hormones sensitizes hepatic AMPK activity during nutritional transition in rodents. J Biol Chem 295(18):5836–5849. https://doi.org/10.1074/jbc.RA119.010244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kazior Z, Willis SJ, Moberg M, Apro W, Calbet JA, Holmberg HC, Blomstrand E (2016) Endurance exercise enhances the effect of strength training on muscle fiber size and protein expression of Akt and mTOR. PLoS One 11(2):e0149082. https://doi.org/10.1371/journal.pone.0149082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cui X, Zhang Y, Wang Z, Yu J, Kong Z, Ružić L (2019) High-intensity interval training changes the expression of muscle RING-finger protein-1 and muscle atrophy F-box proteins and proteins involved in the mechanistic target of rapamycin pathway and autophagy in rat skeletal muscle. Exp Physiol 104(10):1505–1517. https://doi.org/10.1113/EP087601

    Article  CAS  PubMed  Google Scholar 

  23. Høydal MA, Wisløff U, Kemi OJ, Ellingsen Ø (2007) Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. Eur J Cardiovasc Prev Rehabil 14(6):753–760. https://doi.org/10.1097/HJR.0b013e3281eacef1

    Article  PubMed  Google Scholar 

  24. Wisløff U, Helgerud J, Kemi OJ, Ellingsen Ø (2001) Intensity-controlled treadmill running in rats: V̇o(2 max) and cardiac hypertrophy. Am J Physiol Heart Circ Physiol 280(3):H1301-1310. https://doi.org/10.1152/ajpheart.2001.280.3.H1301

    Article  PubMed  Google Scholar 

  25. Liao J, Li Y, Zeng F, Wu Y (2015) Regulation of mTOR pathway in exercise-induced cardiac hypertrophy. Int J Sports Med 36(5):343–350. https://doi.org/10.1055/s-0034-1395585

    Article  CAS  PubMed  Google Scholar 

  26. Sturgeon K, Muthukumaran G, Ding D, Bajulaiye A, Ferrari V, Libonati JR (2015) Moderate-intensity treadmill exercise training decreases murine cardiomyocyte cross-sectional area. Physiol Rep 3(5):e12406. https://doi.org/10.14814/phy2.12406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sakakima H, Yoshida Y, Sakae K, Morimoto N (2004) Different frequency treadmill running in immobilization-induced muscle atrophy and ankle joint contracture of rats. Scand J Med Sci Sports 14(3):186–192. https://doi.org/10.1111/j.1600-0838.2004.382.x

    Article  PubMed  Google Scholar 

  28. McKenzie MJ, Goldfarb AH, Kump DS (2011) Gene response of the gastrocnemius and soleus muscles to an acute aerobic run in rats. J Sport Sci Med 10(2):385. https://doi.org/10.1249/01.mss.0000353510.09224.94

    Article  Google Scholar 

  29. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37(10):1974–1984. https://doi.org/10.1016/j.biocel.2005.04.018

    Article  CAS  PubMed  Google Scholar 

  30. Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 1(1):4. https://doi.org/10.1186/2044-5040-1-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10(8):935–945. https://doi.org/10.1038/ncb1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2):290–303. https://doi.org/10.1016/j.cell.2010.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aoyama T, Matsui T, Novikov M, Park J, Hemmings B, Rosenzweig A (2005) Serum and glucocorticoid-responsive kinase-1 regulates cardiomyocyte survival and hypertrophic response. Circulation 111(13):1652–1659. https://doi.org/10.1161/01.CIR.0000160352.58142.06

    Article  CAS  PubMed  Google Scholar 

  34. Avruch J, Belham C, Weng Q, Hara K, Yonezawa K (2001) The p70S6 kinase integrates nutrient and growth signals to control translational capacity. Prog Mol Subcell Biol 26:115–154. https://doi.org/10.1007/978-3-642-56688-2_5

    Article  CAS  PubMed  Google Scholar 

  35. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945. https://doi.org/10.1101/gad.1212704

    Article  CAS  PubMed  Google Scholar 

  36. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318. https://doi.org/10.1038/nrm2672

    Article  CAS  PubMed  Google Scholar 

  37. Qin X, Jiang B, Zhang Y (2016) 4E-BP1, a multifactor regulated multifunctional protein. Cell Cycle 15(6):781–786. https://doi.org/10.1080/15384101.2016.1151581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, Blaauw B, DePinho RA, Sandri M (2015) Regulation of autophagy and the ubiquitin–proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 6:6670. https://doi.org/10.1038/ncomms7670

    Article  CAS  PubMed  Google Scholar 

  39. Puig O, Marr MT, Ruhf ML, Tjian R (2003) Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev 17(16):2006–2020. https://doi.org/10.1101/gad.1098703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tzivion G, Dobson M (1813) Ramakrishnan G (2011) FoxO transcription factors; regulation by AKT and 14–3-3 proteins. Biochim Biophys Acta 11:1938–1945. https://doi.org/10.1016/j.bbamcr.2011.06.002

    Article  CAS  Google Scholar 

  41. Huang H, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120(15):2479–2487. https://doi.org/10.1242/jcs.001222

    Article  CAS  PubMed  Google Scholar 

  42. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3):1101–1111. https://doi.org/10.1091/mbc.e03-09-0704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghosh R, Pattison JS (2018) Macroautophagy and chaperone-mediated autophagy in heart failure: the known and the unknown. Oxid Med Cell Longev. https://doi.org/10.1155/2018/8602041

    Article  PubMed  PubMed Central  Google Scholar 

  44. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3):460–473. https://doi.org/10.1089/ars.2013.5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6(5):376–385. https://doi.org/10.1016/j.cmet.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  46. Popovic B, Popovic D, Macut D, Antic IB, Isailovic T, Ognjanovic S, Bogavac T, Kovacevic VE, Ilic D, Petrovic M, Damjanovic S (2019) Acute response to endurance exercise stress: focus on catabolic/anabolic interplay between cortisol, testosterone, and sex hormone binding globulin in professional athletes. J Med Biochem 38(1):6–12. https://doi.org/10.2478/jomb-2018-0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin-Rincon M, Pérez-López A, Morales-Alamo D, Perez-Suarez I, de Pablos-Velasco P, Perez-Valera M, Perez-Regalado S, Martinez-Canton M, Gelabert-Rebato M, Juan-Habib JW, Holmberg HC (2019) Exercise mitigates the loss of muscle mass by attenuating the activation of autophagy during severe energy deficit. Nutrients 11(11):E2824. https://doi.org/10.3390/nu11112824

    Article  CAS  PubMed  Google Scholar 

  48. Sudhakar SR, Varghese J (2018) Insulin signalling activates multiple feedback loops to elicit hunger-induced feeding in Drosophila. Dev Biol. https://doi.org/10.1016/j.ydbio.2019.11.013

    Article  Google Scholar 

  49. Hellyer NJ, Nokleby JJ, Thicke BM, Zhan WZ, Sieck GC, Mantilla CB (2012) Reduced ribosomal protein S6 phosphorylation following progressive resistance exercise in growing adolescent rats. J Strength Cond Res 26(6):1657–1666. https://doi.org/10.1519/JSC.0b013e318231abc9

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cartee GD, Hepple RT, Bamman MM, Zierath JR (2016) Exercise promotes healthy aging of skeletal muscle. Cell Metab 23(6):1034–1047. https://doi.org/10.1016/j.cmet.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was supported for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Gholipour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments and procedures used in this study were in accordance with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. In addition, approval was obtained from the ethics committee of the Sport Sciences Research Institute of Iran.

Informed consent

For this type of study formal consent is not required.

Human and animal rights

All procedures of this study were approved by the Payame Noor University Research Ethics Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholipour, M., Seifabadi, M. & Asad, M.R. Endurance exercise training under normal diet conditions activates skeletal muscle protein synthesis and inhibits protein degradation signaling except MuRF1. Sport Sci Health 18, 1033–1041 (2022). https://doi.org/10.1007/s11332-021-00888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-021-00888-8

Keywords

Navigation