Skip to main content

Advertisement

Log in

Effects of low-intensity pulsed ultrasound on muscle thickness and echo intensity of the elbow flexors following exercise-induced muscle damage

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to analyze the effects of pulsed ultrasound on muscle thickness (MT) and echo intensity (EI) after strenuous exercise.

Methods

Forty healthy untrained male were randomized in either experimental group (n = 20) or placebo group (n = 20). Muscle thickness and EI of the dominant elbow flexors were collected at baseline (PRE), immediately post (0 h), 24, 48, 72, and 96 h after the protocol of damage induction. The protocol of damage induction was performed on an isokinetic dynamometer and consisted of four sets of ten repetitions of maximal eccentric and concentric contractions. The experimental group was treated with pulsed ultrasound (1:4, 1 MHz, 0.8 W/cm2, 23 min) at 0, 24, 48, and 72 h following the protocol of damage induction. The placebo group received the same time of application, but the equipment was kept turned off.

Results

The results demonstrated that MT and EI significantly increased at all time points after the exercise (p < 0.05). However, neither MT nor EI showed any significant difference between groups at any moment (p > 0.05).

Conclusion

Pulsed ultrasound is ineffective in enhancing recovery from exercise-induced muscle damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buford TW, Cooke MB, Shelmadine BD et al (2009) Effects of eccentric treadmill exercise on inflammatory gene expression in human skeletal muscle. Appl Physiol Nutr Metab 34:745–753

    Article  CAS  PubMed  Google Scholar 

  2. Chen TC, Lin KY, Chen HL et al (2011) Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur J Appl Physiol 111:211–223. doi:10.1007/s00421-010-1648-7

    Article  PubMed  Google Scholar 

  3. Brentano MA, Umpierre D, Dos Santos LP et al (2016) Muscle damage and muscle activity induced by strength training super-sets in physically active men. J strength Cond Res Natl Strength Cond Assoc. doi:10.1519/JSC.0000000000001511

    Google Scholar 

  4. Ascensão A, Leite M, Rebelo AN et al (2011) Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci 29:217–225. doi:10.1080/02640414.2010.526132

    Article  PubMed  Google Scholar 

  5. Craig JA, Bradley J, Walsh DM et al (1999) Delayed onset muscle soreness: lack of effect of therapeutic ultrasound in humans. Arch Phys Med Rehabil 80:318–323

    Article  CAS  PubMed  Google Scholar 

  6. ter Haar G (2007) Therapeutic applications of ultrasound. Prog Biophys Mol Biol 93:111–129. doi:10.1016/j.pbiomolbio.2006.07.005

    Article  PubMed  Google Scholar 

  7. Stay JC, Ricard MD, Draper DO et al (1998) Pulsed ultrasound fails to diminish delayed-onset muscle soreness symptoms. J Athl Train 33:341–346

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Plaskett C, Tiidus PM, Livingston L (1999) Ultrasound treatment does not affect postexercise muscle strength recovery or soreness. J Sport Rehabil 8:1

    Article  Google Scholar 

  9. Aytar A, Handan Uzün E, Eker L et al (2008) Effectiveness of low-dose pulsed ultrasound for treatment of delayed-onset muscle soreness: a double-blind randomized controlled trial. Isokinet Exerc Sci 16:239–247

    Google Scholar 

  10. Baird MF, Graham SM, Baker JS, Bickerstaff GF (2012) Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. doi:10.1155/2012/960363

    PubMed  PubMed Central  Google Scholar 

  11. Radaelli R, Bottaro M, Wilhelm EN et al (2012) Time course of strength and echo intensity recovery after resistance exercise in women. J Strength Cond Res 26:2577–2584. doi:10.1519/JSC.0b013e31823dae96

    Article  PubMed  Google Scholar 

  12. Fujikake T, Hart R, Nosaka K (2009) Changes in B-mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes. Ultrasound Med Biol 35:687–696. doi:10.1016/j.ultrasmedbio.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  13. Vieira A, Siqueira AF, Ferreira-junior JB (2014) Ultrasound imaging in women’ s arm flexor muscles: intra-rater reliability of muscle thickness and echo intensity. Braz J Phys Therapy. doi:10.1590/bjpt-rbf.2014.0186

    Google Scholar 

  14. Newton MJ, Morgan GT, Chapman DW, Nosaka KK (2008) Comparison of responses to strenuous eccentric exercise of the elbow flexors between resistance-trained and untrained men. J Strength Cond Res 22:597–607. doi:10.1519/JSC.0b013e3181660003

    Article  PubMed  Google Scholar 

  15. Enns DL, Tiidus PM (2010) The influence of estrogen on skeletal muscle: sex matters. Sport Med 40:41–58. doi:10.2165/11319760-000000000-00000

    Article  Google Scholar 

  16. Flores DF, Gentil P, Brown LE et al (2011) Dissociated time course of recovery between genders after resistance exercise. J Strength Cond Res 25:3039–3044. doi:10.1519/JSC.0b013e318212dea4

    Article  PubMed  Google Scholar 

  17. Lima CS, Medeiros DM, Prado LR et al (2017) Local cryotherapy is ineffective in accelerating recovery from exercise-induced muscle damage on biceps brachii. Sport Sci Health. doi:10.1007/s11332-017-0355-8

    Google Scholar 

  18. Nosaka K, Newton M, Sacco P et al (2005) Partial protection against muscle damage by eccentric actions at short muscle lengths. Med Sci Sports Exerc 37:746–753. doi:10.1249/01.MSS.0000162691.66162.00

    Article  PubMed  Google Scholar 

  19. Radaelli R, Bottaro M, Wagner DR et al (2014) Men and women experience similar muscle damage after traditional resistance training protocol. Isokinet Exerc Sci 22:47–54. doi:10.3233/IES-130519

    Google Scholar 

  20. Proske U, Morgan DL (2001) Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537:333–345. doi:10.1111/j.1469-7793.2001.00333.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. MacIntyre DL, Sorichter S, Mair J et al (2001) Markers of inflammation and myofibrillar proteins following eccentric exercise in humans. Eur J Appl Physiol 84:180–186. doi:10.1007/s004210170002

    Article  CAS  PubMed  Google Scholar 

  22. McCully KK, Faulkner JA (1985) Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol 59:119–126

    CAS  PubMed  Google Scholar 

  23. Young HJ, Jenkins NT, Zhao Q, Mccully KK (2015) Measurement of intramuscular fat by muscle echo intensity. Muscle Nerve 52:963–971. doi:10.1002/mus.24656

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fukumoto Y, Ikezoe T, Yamada Y et al (2012) Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur J Appl Physiol 112:1519–1525. doi:10.1007/s00421-011-2099-5

    Article  PubMed  Google Scholar 

  25. Cadore EL, Izquierdo M, Conceição M et al (2012) Echo intensity is associated with skeletal muscle power and cardiovascular performance in elderly men. Exp Gerontol 47:473–478. doi:10.1016/j.exger.2012.04.002

    Article  PubMed  Google Scholar 

  26. Picelli A, Bonetti P, Fontana C et al (2012) Is spastic muscle echo intensity related to the response to botulinum toxin type a in patients with stroke? A cohort study. Arch Phys Med Rehabil 93:1253–1258. doi:10.1016/j.apmr.2012.02.005

    Article  PubMed  Google Scholar 

  27. Peake JM, Nosaka K, Muthalib M, Suzuki K (2006) Systemic inflammatory responses to maximal versus submaximal lengthening contractions of the elbow flexors. Exerc Immunol Rev 12:72–85

    PubMed  Google Scholar 

  28. Kanda K, Sugama K, Hayashida H et al (2013) Eccentric exercise-induced delayed-onset muscle soreness and changes in markers of muscle damage and inflammation. Exerc Immunol Rev 19:72–85

    PubMed  Google Scholar 

  29. Jones DA, Newham DJ, Round JM, Tolfree SE (1986) Experimental human muscle damage: morphological changes in relation to other indices of damage. J Physiol 375:435–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stupka N, Lowther S, Chorneyko K et al (2000) Gender differences in muscle inflammation after eccentric exercise. J Appl Physiol 89:2325–2332

    CAS  PubMed  Google Scholar 

  31. Zainuddin Z, Newton M, Sacco P, Nosaka K (2005) Effects of massage on delayed-onset muscle soreness, swelling, and recovery of muscle function. J Athl Train 40:174–180. doi:10.1136/bjsm.37.1.72

    PubMed  PubMed Central  Google Scholar 

  32. Hill J, Howatson G, Van Someren K et al (2014) Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. Br J Sport Med 48:1340–1346. doi:10.1136/bjsports-2013-092456

    Article  Google Scholar 

  33. Crane JD, Ogborn DI, Cupido C et al (2012) Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci Transl Med 4:119-ra13. doi:10.1126/scitranslmed.3002882

    Article  Google Scholar 

  34. Tseng C-Y, Lee J-P, Tsai Y-S et al (2013) Topical cooling (icing) delays recovery from eccentric exercise-induced muscle damage. J Strength Cond Res 27:1354–1361. doi:10.1519/JSC.0b013e318267a22c

    Article  PubMed  Google Scholar 

  35. Malm C, Yu JG (2012) Exercise-induced muscle damage and inflammation: re-evaluation by proteomics. Histochem Cell Biol 138:89–99. doi:10.1007/s00418-012-0946-z

    Article  CAS  PubMed  Google Scholar 

  36. Urso ML (2013) Anti-inflammatory interventions and skeletal muscle injury: benefit or detriment? J Appl Physiol 115:920–928. doi:10.1152/japplphysiol.00036.2013

    Article  CAS  PubMed  Google Scholar 

  37. Hasson S, Mundorf R, Barnes W et al (1990) Effect of pulsed ultrasound versus placebo on muscle soreness perception and muscular performance. Scand J Rehabil Med 22:199–205

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Counsel of Technological and Scientific Development for the scientific initiation scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diulian Muniz Medeiros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures of the present study were approved by the Federal University of Rio Grande do Sul Review Board, and they were performed in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medeiros, D.M., Mantovani, R.F. & Lima, C.S. Effects of low-intensity pulsed ultrasound on muscle thickness and echo intensity of the elbow flexors following exercise-induced muscle damage. Sport Sci Health 13, 365–371 (2017). https://doi.org/10.1007/s11332-017-0366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-017-0366-5

Keywords

Navigation